
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [USDA National Agricultural Library]
On: 30 June 2010
Access details: Access Details: [subscription number 917351290]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Critical Reviews in Plant Sciences
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713400911

Plant Disease Severity Estimated Visually, by Digital Photography and
Image Analysis, and by Hyperspectral Imaging
C. H. Bocka; G. H. Pooleb; P. E. Parkerc; T. R. Gottwaldb

a USDA-ARS-SEFNTRL, Byron, GA, USA b USDA-ARS-USHRL, Ft. Pierce, FL, USA c USDA-APHIS-
PPQ, Edinburg, TX, USA

Online publication date: 09 March 2010

To cite this Article Bock, C. H. , Poole, G. H. , Parker, P. E. and Gottwald, T. R.(2010) 'Plant Disease Severity Estimated
Visually, by Digital Photography and Image Analysis, and by Hyperspectral Imaging', Critical Reviews in Plant Sciences,
29: 2, 59 — 107
To link to this Article: DOI: 10.1080/07352681003617285
URL: http://dx.doi.org/10.1080/07352681003617285

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713400911
http://dx.doi.org/10.1080/07352681003617285
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Critical Reviews in Plant Sciences, 29:59–107, 2010
ISSN: 0735-2689 print / 1549-7836 online
DOI: 10.1080/07352681003617285

Plant Disease Severity Estimated Visually, by Digital
Photography and Image Analysis, and by Hyperspectral Imaging

C.H. Bock,1 G.H. Poole,2 P.E. Parker,3 and T.R. Gottwald2

1USDA-ARS-SEFNTRL, Byron, GA, USA∗
2USDA-ARS-USHRL, Ft. Pierce, FL, USA
3USDA-APHIS-PPQ, Moore Air Base, Edinburg, TX, USA

Table of Contents

I. INTRODUCTION ...............................................................................................................................................61
A. Background ...................................................................................................................................................61
B. Aim and Scope of This Review .......................................................................................................................62

II. TERMS AND DEFINITIONS USED IN PLANT DISEASE ESTIMATION AND MEASUREMENT ..................62

III. APPROACHES TO IDENTIFY ERROR, TEST RELIABILITY, ACCURACY, AND AGREEMENT OF
DISEASE SEVERITY ESTIMATES AND MEASURMENTS .............................................................................64
A. The Need for Actual Values ............................................................................................................................64
B. Statistical Tests to Identify Error and Quantify the Quality Of Disease Severity Estimates and Measurements ........65

1. Analysis of Variance (ANOVA) and General Linear Modeling (GLM) ........................................................65
2. The Correlation Coefficient .....................................................................................................................66
3. Regression Analysis ...............................................................................................................................66
4. Lin’s Concordance Correlation Coefficient ...............................................................................................68
5. Other Methods to Explore the Quality of the Estimate or Measurement .......................................................69

IV. VISUAL ASSESSMENT ......................................................................................................................................70
A. How the Eye Works ........................................................................................................................................70
B. Rater Error and Its Ramifications .....................................................................................................................71
C. Sources of Error .............................................................................................................................................71

1. Individuals Vary in Their Intrinsic Ability ................................................................................................71
2. Value Preferences by Raters ....................................................................................................................72
3. Lesion Number and Size Relative to Area Infected ....................................................................................72
4. Actual Disease Severity ..........................................................................................................................73
5. Plant Structure and Size ..........................................................................................................................73
6. Time Taken to Assess Disease .................................................................................................................74
7. Color Blindness .....................................................................................................................................74
8. Complexity of Symptoms and Timing ......................................................................................................74
9. Interactions among Multiple Factors ........................................................................................................74

D. Methods Used to Visually Estimate Disease Severity .........................................................................................74
1. Nominal or Descriptive Scales .................................................................................................................75
2. Ordinal Scales ........................................................................................................................................75
3. Interval or Category Scales ......................................................................................................................75
4. Ratio Scales ...........................................................................................................................................79

Address correspondence to Clive Bock, USDA-ARS-SEFNTRL, 21 Dunbar Rd., Byron, GA 31008, USA. E-mail: clive.bock@ars.usda.gov
∗Dr. Bock was formerly associated with the University of Florida/USDA, Ft. Pierce, FL, USA, at the time this article was written.
∗∗This article is not subject to U.S. copyright law.

59

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
S
D
A
 
N
a
t
i
o
n
a
l
 
A
g
r
i
c
u
l
t
u
r
a
l
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
5
:
1
1
 
3
0
 
J
u
n
e
 
2
0
1
0



60 C. H. BOCK ET AL.

E. Ways to Improve Visual Estimates of Disease Severity ......................................................................................79
1. General Field/Lab Training .....................................................................................................................80
2. Using Standard Area Diagrams (SADs) ....................................................................................................80
3. Computer-based Training ........................................................................................................................82
4. Using Leaf Grids ....................................................................................................................................82

F. A Comparison of Visual Rating Methods for Disease Severity Assessment ..........................................................82
G. A Note on the Analysis of Data From Ratio, Interval (Category) and Ordinal Scales ............................................83
H. The Future of Visual Rating Methods ...............................................................................................................83

V. DIGITAL IMAGERY AND IMAGE ANALYSIS IN THE VISIBLE SPECTRUM ...............................................84
A. Digital Cameras and Other Image-Acquiring Devices ........................................................................................84
B. Image Acquisition ..........................................................................................................................................84
C. Image Resolution and Subject Orientation ........................................................................................................84
D. Image Processing ...........................................................................................................................................86
E. Image Analysis Software and Image Measurement ............................................................................................86
F. The History and Application of Image Analysis in Plant Disease Measurement ...................................................89

1. General Studies on the Application of Image Analysis ...............................................................................90
2. Specific Applications of Image Analysis in the Visible Spectrum for Disease Severity Assessment ................90

a. Quantifying host resistance ......................................................................................................90
b. Pathogen population biology ....................................................................................................91
c. Pathogen effects on different host species ..................................................................................91
d. Relating disease severity to yield loss and fungicide efficacy .......................................................91
e. As a tool in developing assessment aids ....................................................................................92
f. To compare components of disease ...........................................................................................92
g. Measuring disease on fruit and seed ..........................................................................................92

G. The Future of Image Analysis Methods for Disease Measurement ......................................................................92

VI. HYPERSPECTRAL IMAGING ..........................................................................................................................92
A. Use of Hyperspectral Imaging .........................................................................................................................92
B. History and Background to HSI .......................................................................................................................93
C. Acquisition of the “Hypercube” Image .............................................................................................................94
D. Wavelength Ranges ........................................................................................................................................94
E. Spatial Resolution ..........................................................................................................................................95
F. Image Processing Software and Algorithms for Analyzing Hyperspectral Data ....................................................95

1. File Reduction and Subsetting .................................................................................................................96
2. Spectral Library Definition ......................................................................................................................96
3. Classifiers ..............................................................................................................................................96

a. Parallelepiped classifier ...........................................................................................................97
b. Maximum likelihood classifier .................................................................................................97
c. Mahalanobis distance classifier .................................................................................................97
d. Linear spectral unmixing classifier ............................................................................................97
e. Minimum distance classifier .....................................................................................................97
f. Matched filter classifier ............................................................................................................97
g. Spectral angle mapper classifier ................................................................................................98
h. Neural net classifier .................................................................................................................98
i. Binary encoding classification ..................................................................................................98

G. Application in Plant Pathology ........................................................................................................................98
1. Detection of Disease ...............................................................................................................................98
2. Using HSI to Assess Disease Severity ......................................................................................................99
3. Ability to Discern Multiple Disease Symptoms ....................................................................................... 100

H. The Future of HSI for Disease Severity Measurement ...................................................................................... 100

VII. ADVANTAGES AND DISADVANTAGES OF VISUAL RATING, IMAGE ANALYSIS, AND HYPERSPEC-
TRAL IMAGING .............................................................................................................................................. 100

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
S
D
A
 
N
a
t
i
o
n
a
l
 
A
g
r
i
c
u
l
t
u
r
a
l
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
5
:
1
1
 
3
0
 
J
u
n
e
 
2
0
1
0



VISUALLY ESTIMATED PLANT DISEASE SEVERITY 61

VIII. SOME FUTURE RESEARCH PRIORITIES IN VISUAL ASSESSMENT, THE APPLICATION OF HYPER-
SPECTRAL IMAGING AND IMAGE ANALYSIS FOR MEASURING DISEASE SEVERITY ......................... 101

IX. CONCLUSIONS ............................................................................................................................................... 101

ACKNOWLEDGMENTS ........................................................................................................................................... 102

REFERENCES .......................................................................................................................................................... 102

Reliable, precise and accurate estimates of disease severity are
important for predicting yield loss, monitoring and forecasting epi-
demics, for assessing crop germplasm for disease resistance, and
for understanding fundamental biological processes including co-
evolution. Disease assessments that are inaccurate and/or imprecise
might lead to faulty conclusions being drawn from the data, which
in turn can lead to incorrect actions being taken in disease manage-
ment decisions. Plant disease can be quantified in several different
ways. This review considers plant disease severity assessment at the
scale of individual plant parts or plants, and describes our current
understanding of the sources and causes of assessment error, a bet-
ter understanding of which is required before improvements can
be targeted. The review also considers how these can be identified
using various statistical tools. Indeed, great strides have been made
in the last thirty years in identifying the sources of assessment error
inherent to visual rating, and this review highlights ways that as-
sessment errors can be reduced—particularly by training raters or
using assessment aids. Lesion number in relation to area infected is
known to influence accuracy and precision of visual estimates—the
greater the number of lesions for a given area infected results in
more overestimation. Furthermore, there is a widespread tendency
to overestimate disease severity at low severities (<10%). Both in-
terrater and intrarater reliability can be variable, particularly if
training or rating aids are not used. During the last eighty years
acceptable accuracy and precision of visual disease assessments
have often been achieved using disease scales, particularly because
of the time they allegedly save, and the ease with which they can be
learned, but recent work suggests there can be some disadvantages
to their use. This review considers new technologies that offer op-
portunity to assess disease with greater objectivity (reliability, pre-
cision, and accuracy). One of these, visible light photography and
digital image analysis has been increasingly used over the last thirty
years, as software has become more sophisticated and user-friendly.
Indeed, some studies have produced very accurate estimates of dis-
ease using image analysis. In contrast, hyperspectral imagery is
relatively recent and has not been widely applied in plant pathol-
ogy. Nonetheless, it offers interesting and potentially discerning op-
portunities to assess disease. As plant disease assessment becomes
better understood, it is against the backdrop of concepts of reliabil-
ity, precision and accuracy (and agreement) in plant pathology and
measurement science. This review briefly describes these concepts
in relation to plant disease assessment. Various advantages and
disadvantages of the different approaches to disease assessment
are described. For each assessment method some future research
priorities are identified that would be of value in better understand-
ing the theory of disease assessment, as it applies to improving and
fully realizing the potential of image analysis and hyperspectral
imagery.

Keywords plant disease assessment, variance, error, image analysis,
hyperspectral imagery, remote sensing

I. INTRODUCTION

A. Background
There are diverse reasons why we need to estimate or measure

disease on plants. Knowledge of the quantity of disease is par-
ticularly important to decision-makers in crop situations where
disease must be related to yield loss, in plant breeding where
various germplasm, varieties and/or cultivars need to be rated,
and for disease management decisions, for example, applying
pesticides to control disease epidemics, but also for understand-
ing fundamental processes in biology, including coevolution and
plant disease epidemiology (James, 1971; Berger, 1980; Kranz,
1988; Gaunt, 1995; Nutter and Gaunt, 1996; Burdon et al., 2006;
Cooke, 2006; Nutter et al., 2006).

Quantifying disease on plants by measuring symptoms gen-
erally falls under the broad definition of “remote sensing” (there
are one or two exceptions). Remote sensing can be defined as
obtaining information about an object without having direct
physical contact with it (de Jong et al., 2006). In contrast, mea-
surement of pH, soil temperature or moisture (and many other
phenomena) is done by direct contact with the object. Thus,
both visual estimation of disease and using cameras or other
imaging technologies to measures disease can be considered as
remote sensing (Nutter, 1990). Furthermore, remote sensing of
disease is a passive remote sensing process, rather than an active
method that would generate imaging radiation, such as X-rays.
Exceptions to measuring disease by remote sensing could be by
weighing diseased vs. healthy portions of an actual leaf or pho-
tograph to ascertain percent severity (Tucker and Chakraborty,
1997; Nita et al., 2003). Some planimeter measurements, and
quantifying the pathogen using molecular or immunological
techniques are also direct measurements and do not fall under
the broad definition of remote sensing.

Much of the historic background to the development of ways
to measure or estimate disease is considered in various re-
views (Chester, 1950; Large, 1966; James, 1971; Berger, 1980;
Nilsson, 1995; Nutter et al., 2006), and in books (Campbell
and Madden, 1990; Cooke, 2006; Madden et al., 2007). Early
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estimation of disease severity included visual estimation qualita-
tively or quantitatively, often with the aid of various assessment
scales or keys (Cobb, 1892; Horsfall and Barratt, 1945; Chester,
1950; James, 1971), a process that has become better under-
stood and thus more exacting over the last thirty years (Nutter
et al., 1993; Nutter and Schulz, 1995; Madden et al., 2007; Bock
et al., 2009b). The value of assessment training and the use of
color (or black and white) standard area diagrams to assist raters
are now acknowledged (Nutter and Schulz, 1995; Nutter et al.,
2006).

The application of technologically advanced remote sensing
techniques to locate and measure plant disease started early
with aerial photography (Neblette, 1927; Taubenhaus et al.,
1929) and has been applied to various pathosystems (Colwell,
1956; Brenchley, 1964; Wallen and Jackson, 1971; Jackson
et al., 1978; Lillesand et al., 1981; Gerten and Weise, 1984;
Edwards et al., 1985; Lee, 1989). In the last thirty years these
and newer methods continue to be explored to quantify plant
disease, which include methods of detecting and measuring the
pathogen or disease population at various scales, ranging from
molecular to regional views (Chester, 1950; Price and Osborne,
1990; Nilsson, 1995, Nutter et al., 2006). Thus, the pathogens
can be detected and quantified by immunological and molecular
methods (ELISA, PCR etc; Nutter et al., 2006; Jackson et al.,
2007) and by microscopy (Hilber and Scheupp, 1992). The dis-
ease caused by the pathogen can be detected and quantified
as symptoms by laser induced fluorescence, radar, microwave,
thermography, nuclear magnetic resonance imaging, multi- and
hyper-spectral imagery, digital (or film) cameras and image anal-
ysis, and visual assessment (Pederson and Nutter, 1982; Price
and Osborne, 1990; Nilsson, 1995). Of the methods available
to measure disease, it is important to choose a method that is
appropriate and will estimate the correct variable with sufficient
quality so that the data represent a realistic estimate of the ac-
tual level of disease in a host population, thereby assuring that
subsequent conclusions drawn from the data are correct. While
achieving these ends it is also necessary to utilize limited re-
sources (equipment, labor and time) as effectively and efficiently
as possible (Campbell and Madden, 1990; Nutter and Gaunt,
1996).

B. Aim and Scope of This Review
Disease in plant populations can be quantified in several

ways (intensity, prevalence, incidence and severity, defined in
the next section). Only estimation and measurement of plant
disease severity will be considered in this review. Furthermore,
the majority of plant pathologists quantify disease severity at the
scale of individual plant organs (leaves, stems, fruit, and roots),
plants or in small quadrats, and of the many methods that have
been used or investigated for estimating or measuring disease
severity, this review will consider only three approaches: visual
assessment, digital photography and image analysis, and hy-

perspectral imagery. Visual assessment is now reasonably well
understood (the practice is over 100 years old; Chester, 1950;
Cobb, 1892). Digital (and film) photography with image anal-
ysis is being increasingly applied as the technology evolves
and has found considerable application in the plant sciences in-
cluding forestry, horticulture and agriculture, often dealing with
whole tree and for plant stand issues (defoliation, vegetative
cover), which is beyond the scope of this review (Price and
Osborne, 1990; Nilsson, 1995). It is of note that digital images
are used not only for assessing disease severity, but also for the
diagnosis of plant diseases and other disorders (Holmes et al.,
2000). Finally, hyperspectral imagery is new to plant disease
severity measurement and is still in the early phase of devel-
opmental use in plant disease detection and quantification, but
offers interesting opportunities for application (Coops et al.,
2003; Larsolle and Muhammad, 2007; Huang et al., 2007; Qin
et al., 2008). The statistical tools that are used to measure the
quality of estimated disease assessments compared to the actual
(or true) disease will be described. Visual assessment, digital
image analysis, and hyperspectral imagery will be considered
from an historic context, including a description of the technolo-
gies and their application in plant disease assessment, as well
as the potential problems, among the three methods. Finally
an outline of future areas of research interest and need will be
presented.

II. TERMS AND DEFINITIONS USED IN PLANT
DISEASE ESTIMATION AND MEASUREMENT

The terms used to describe concepts and their interpretation
are important in plant disease assessment, and are subject to re-
definition as a result of advances made in other fields, including
measurement science (Madden et al., 2007). The branch of plant
pathology dealing with plant disease assessment was christened
“plant pathometry” or “phytopathometry” (from the greek
phyto = plant; pathos = disease, metron = measure) by Large
(1953, 1966); this term was also used by Horsfall and Cowling
(1978) and Nutter et al., (2006). Based on Large’s (1953, 1966)
description, phytopathometry encompasses the mensuration,
rules, and history of plant disease symptom assessment. Some
preliminary attempts to discuss the importance of plant disease
assessment were made by Moore (1943, 1949), but the first
definitive review of the literature was by Chester (1950). The
need for clear terminology in phytopathometry was recognized
by the late 1980s (Nutter et al., 1991), when a subcommittee
of the American Phytopathological Society (APS) was formed
to provide a consensus on disease assessment terms and
concepts.

In this review the term plant disease severity “estimate” is
used specifically for those assessments made visually, and the
term “measurement” for those assessments by image analy-
sis or hyperspectral equipment. Plant disease symptoms can
be estimated or measured in various ways that quantify the
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intensity, prevalence, incidence, or severity of disease. The
following relate to the way in which disease symptoms are
quantified:

i) Disease intensity is a general term used to describe the
amount of disease present in a population (Nutter et al.,
1991).

ii) Disease prevalence is the proportion (or percent) of fields,
counties, states, etc. where the disease is detected, and re-
veals disease at a grander scale than incidence (Nutter et al.,
1991).

iii) Disease incidence is the proportion (or percent) of plants
(or plant units, leaves, branches, etc.) diseased out of a total
number assessed (Nutter et al., 1991; Madden et al., 2007).

iv) Disease severity is the area (relative or absolute) of the sam-
pling unit (leaf, fruit, etc.) showing symptoms of disease.
It is most often expressed as a percentage or proportion
(Nutter et al., 1991). Disease severity is the only measure
considered in this review.

Thus there are several ways to quantify disease, and under-
standing the differences among these methods is fundamental
to disease assessment. Furthermore, it is useful to be aware of
the relationships between disease incidence and severity (Seem,
1984), which is varied and dependent on the pathosystem and
time of sampling, although in some cases incidence and severity
are equivalent. When choosing a variable to assess, forethought
should be given to the kind of data required. Various stud-
ies and reviews have considered the subject of disease severity
and disease incidence in detail (Seem, 1984; McRoberts et al.,
2003).

A further consideration is that traditional concepts of plant
disease as symptoms on a leaf or other organ have been
challenged by the advent of immunological and molecular
methods and the ability to measure the quantity of the pathogen,
rather than the symptoms, which can then be used to relate
to yield, disease progress, or host resistance (Nutter et al.,
2006; Jackson et al., 2007). This is an important and valuable
development, but has reinforced the need for clear terminology
to avoid confusion. Pathogen intensity, prevalence, incidence,
and severity are parallel terms that measure the quantity of the
pathogen in a population (Nutter et al., 2006). It is important
to make the observation that disease estimated by symptoms
or by pathogen quantity can have different results which
has ramifications, for example, for disease versus pathogen
progress estimation (Nutter, 1997b; 2001).

Disease symptoms can be incorrectly assessed by raters or
disease measurement devices which results in error (Nutter
et al., 1993; Nita et al., 2003; Nutter et al., 2006). This error
requires understanding to form the basis for improving the
accuracy and precision of assessments. The terms and concepts
of plant disease assessment that describe its quality, thus,
need to be understood (Nutter et al., 1991; Madden et al.,

2007). Many terms have been used concerning the quality
of plant disease assessments including precision, reliability,
reproducibility, repeatability, accuracy and agreement; all
suggest a gauge of quality, but bear fuller examination to
understand the relationships among them. Comparisons can be
made between assessment data, and these fall primarily into
two groups: those that relate to comparisons among raters or
disease measurement devices (methods), and those in which
ability of the rater or disease measurement device are being
compared to the “actual” value of disease (the “true” value or
“golden standard”). As the following description of concepts
progresses, the reason for these divisions should become
evident.

Various aspects of rater and assessment device error have to
be measured and understood. Conceptualizations and the terms
used in measurement science suggest that the measurement of
plant disease severity should readdress some of these terms,
their equivalence, and their usage (Madden et al., 2007). For a
recent and comprehensive review of terms and concepts used
for assessing quality of estimates in measurement science, the
reader is directed to Barnhart et al., (2007). The concepts and
definitions that follow adhere to those of Madden et al. (2007),
reflecting the most recent developments in plant pathology:

i) Reliability of estimates: Reliability can be defined as “the
extent to which the same measurement of individuals ob-
tained under different conditions yield similar results”
(Everitt, 1998). In studies of plant disease assessment there
are two aspects of reliability that need to be considered. The
first is intrarater reliability, or how similar repeat measure-
ments taken by the same rater are to one another and is also
known as repeatability (Nutter et al., 1991) and equates to
the test-retest procedure often referred to in medical stud-
ies (Deen et al., 2000; Warke et al., 2001). The second is
interrater reliability, which is how similar measurements of
the same specimens are between or among raters or rat-
ing methods at the same time. Interrater reliability is also
called reproducibility (Madden et al., 2007). The term “pre-
cision” is widely used in statistics to denote the amount of
variability, with less precision resulting in greater variabil-
ity (= less similarity). Madden et al. (2007) points out
that although reliability equates to precision (variability)
statistically, in measurement science they are not entirely
synonymous. Also, highly precise estimates are not neces-
sarily close to an actual value (Figure 1). Furthermore, as is
presently described, precision is a component of accuracy
and agreement, and to avoid confusion the term reliability
provides a measure of variability in situations where actual
values are not being considered (i.e., for inter and intrarater
comparisons).

ii) Accuracy and agreement of estimates: According to Barn-
hard et al. (2007) “accuracy,” sensu strictissimo, measures
only systematic bias, while the term “precision” has been
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FIG. 1. Example illustrating good precision of estimates of X that are not
necessarily close to the actual values which lie along the line of concordance
(the solid line at 45o), where the estimates would lie if there was a one-to-one
relation between the estimate and the actual value, i.e., if they were accurate.
Overestimates are above the concordance line and underestimates lie below the
line of concordance. There is a transition point from under- to over-estimate at
an actual value of approx. 20%.

used to measure random error. However, accuracy is often
used in a somewhat broader sense and has included usage
in relation to precision as well. This makes it particularly
important to explicitly define what is meant by accuracy.
In plant pathology, a definition of accuracy that has been
used is “the degree of closeness of measured values to some
recognized standard, true or actual values” (Everitt, 1998;
Nutter, 2001; Madden et al., 2007). Using this general def-
inition, and the premise that perfect accuracy is possible
only if there is no variability (imprecision) and no bias,
Madden et al. (2007) reasoned, that in the case of estimates
of actual values, accuracy was the product of both bias
and precision. Thus measurement of accuracy is meaning-
ful when the comparisons are made to actual or accepted
standard values, and when estimate of disease are close to
the actual value, they are considered accurate. Conceptu-
ally, agreement measures the closeness between readings;
it is a broader term than accuracy, and by definition en-
compasses both accuracy and precision (Barnhart et al.,
2007). In comparing estimates to actual values agreement
is the product of coefficients of precision and accuracy (Lin,
1989). Based on the aforementioned description of the con-
cepts and the general definition of accuracy and agreement
in plant pathology, it is apparent that when estimates are be-
ing compared to actual values, then accuracy and agreement
are equivalent terms (Figure 2; Lin, 1989; Barnhart et al.,
2007; Madden et al., 2007). In plant pathology the term re-
liability, already described in the previous section, is used to
describe the agreement between measurements when actual
values are not involved (i.e., inter- and intrarater estimates;
Madden et al., 2007).
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FIG. 2. The concepts that make accuracy and agreement equivalent in relation
to estimates of “actual” or “true” value based on bias, accuracy and precision, and
the definitions of these terms described in Section III (after Madden et al., 2007).

III. APPROACHES TO IDENTIFY ERROR, TEST
RELIABILITY, ACCURACY, AND AGREEMENT OF
DISEASE SEVERITY ESTIMATES AND
MEASURMENTS

A. The Need for Actual Values
Without an estimate of the actual disease value it is not

possible to assess accuracy or agreement of the measurement or
estimate (Madden et al., 2007). However, a measure of interrater
(or method) reliability or intrarater (or method) reliability can
be gained for raters and methods of severity measurement based
on comparisons of estimates or measurements on two occasions
by the same rater or method (intrarater or intra-method
reliability) and between one rater or method and another
(interrater or inter-method reliability) at the same time. Using
rater values as a standard inevitably runs the risk of adding error
inherent to that rater ability, although raters have been used to
provide a “true” or “standard” value as well (O’Brein and van
Bruggen, 1992).

There are several ways to measure the actual disease sever-
ity. An accurate and reliable method is to make prints of the
leaves and cut out healthy and diseased parts and weigh them
(Sherwood et al., 1983; Nita et al., 2003). In various reports
using this system repeatability has been excellent (Sherwood
et al., 1983; Nutter et al., 1993; Nita et al., 2003). However, any
system will be subject to operator error, including defining ex-
actly where diseased areas end and healthy tissue begins. Image
analysis can be used to estimate actual values of disease on a
leaf-by-leaf basis, and is highly repeatable. Bock et al. (2008a)
showed good intra-method reliability (coefficient of determina-
tion, r2 = 0.95) for estimates of area infected with citrus canker
(with an r2 of 0.99 for counts of lesion number). Reliable and
accurate estimates of disease severity using image analysis have
been reported previously (Lindow and Webb, 1983; Martin and
Rybicki, 1998). Painting infected areas prior to actual value im-
age analysis measurements has also been used (Olmstead et al.,
2001). Nutter and Gaunt (1996) noted a subjective step in image
processing where the operator assigns pixels to represent healthy
versus diseased tissue – however, a certain level of subjectivity
exists when marking a diseased area with a pen, projecting leaf
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images onto acetates and drawing in diseased areas with a black
marker pen and then performing image analysis, or cutting and
weighing portions of leaves. Done with care, these are proba-
bly all reasonably accurate ways of obtaining an actual value.
Various planimeters have also been used to obtain actual values
of disease (Lindow and Webb, 1983; Price et al., 1993; Tucker
and Chakraborty, 1997).

Without actual values, the absolute ability of raters, or new
disease assessment methods cannot be evaluated. Various sta-
tistical methods exist to compare a new technique to actual
values, and assess agreement and investigate reliability (Nutter
et al., 1993; Nutter and Schulz, 1995; Madden et al., 2007).
Several of these methods are standard statistical tools used in
many aspects of plant pathology. However, other methods are
more recent, or have not been used as much in this discipline.
One example is Lin’s concordance correlation coefficient, which
has only recently been applied in plant pathology (Nita et al.,
2003; Madden et al., 2007; Bock et al., 2008a), but has been
increasingly used in many areas of measurement science, in-
cluding in medicine. However, before analysis the quality of
the data should be checked to ensure that it does not violate
any of the assumptions of a proposed analysis (normality, het-
eroscedasticity, etc.) and if it does, data transformation should be
considered.

B. Statistical Tests to Identify Error and Quantify the
Quality Of Disease Severity Estimates and
Measurements

1. Analysis of Variance (ANOVA) and General Linear Model-
ing (GLM)

Analysis of variance is a parametric test that partitions
variance in the sample into predefined explanatory variables
or effects. In the analysis, the sums of squares are partitioned

relating to the effects in the model, and an F -test is used to test
for significant sources of variation. Several studies have used
ANOVA, or GLM, to investigate sources (and magnitude) of
variation or error in estimates or measurements. An early report
using ANOVA to identify factors affecting assessment was that
of Sherwood et al. (1983) who analyzed disease assessments
of Stagonospora leaf spot on orchardgrass. Two- and three-way
ANOVA were used to assign variance to the factors that
influenced disease assessment, and the results showed that apart
from the actual disease, there were significant effects of lesion
number, leaf size, individual rater and rater experience. Using
a similar approach with GLM, similar factors were found to
influence assessment of citrus canker (Xanthomonas citri subsp.
citri, Xcc) on grapefruit leaves (Bock et al., 2008b). In another
study comparing application of image analysis to estimates on a
category scale, a nested ANOVA was used to test various compo-
nents of variance in image analysis estimation (including image
frame, individual specimen, and numbers of specimens per
frame and specimen side and orientation). The results showed
that none of these factors accounted for > 4% of the error in the
measurement of infected area, and the image analysis data were
more objective and relatively more precise (reliable) measure-
ments compared to visual estimates on a category scale (Kokko
et al., 1993 and 2000). Application of ANOVA has shown how
error in assessor and plant organ assessed affects disease esti-
mation on simulated images of infected plant parts (Forbes and
Jeger, 1987; Table 1). Precision was measured with the standard
deviation of an individual’s repeated measurements (the relia-
bility of measurement), and accuracy was measured as average
deviation between the actual and estimated values (closeness to
the actual value). The analysis showed that low disease severity
(<25% disease) was more reliably and accurately estimated, and
that plant structures were a significant factor affecting quality of
assessment.

TABLE 1
Various sources of error identified in a study with effects of assessor, order of assessment, plant structure, and severity. ANOVA

was performed on the absolute error, proportional error and log-transformed error (after Forbes and Jeger, 1987).

Mean square error values

Source of variability Df1 Absolute error2 Proportional error Log-transformed error

Assessor (A) 11 3723∗∗3 28∗∗ 38∗∗

Order (O) 11 203 2∗ 8
Plant structure (PS) 11 1961∗∗ 10∗ 36∗∗

A x O x PS 110 209 1 10
Intensity (I) 5 3876∗∗ 13∗ 172∗∗

PS x I 55 1020∗∗ 3∗ 29∗∗

A x I 55 277∗∗ 2∗∗ 13∗∗

Residual 605 95 6 0.4

1Degrees of freedom.
2Absolute error = estimated percent area diseased – actual percent area diseased; Proportional error = actual percent area diseased; and

log-tranformed error = lntrue diseased area – lnproportional error.
3∗,∗∗represents 0.05 and 0.01 levels of significance, respectively. Assessor, order and plant structure were tested with A x O x PS mean square.

Severity, PS x I and A x I were tested with the residual mean square.
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For testing reliability and general agreement of rater esti-
mates and/or method measurements, ANOVA has been used to
calculate the intra-class correlation coefficient (ρ). The intra-
class correlation coefficient can be defined as the ratio of ac-
tual variance to total variance (Shokes et al., 1987; Nita et al.,
2003; Madden et al., 2007; Bock et al., 2008a). It is calculated
from the variance components of the ANOVA, for example, in
a case where only rater effects are being tested, there are the
following sources of variance (σ ), σ 2

true, σ 2
observer,and σ 2

error, the
variance can be portioned into components by a two-way ran-
dom effects ANOVA where ρ = σ 2

true/(σ 2
true + σ 2

rater +σ 2
error).

Shokes et al. (1987) used a two-way ANOVA for testing re-
liability and agreement of various assessment procedures and
assessors on late leafspot of peanut and showed that training
improved interrater reliability, and certain symptoms were con-
sistently more reliably estimated (for example, necrotic area)
compared to other symptoms. The intra-class correlation was
used to demonstrate that reliability of direct estimation of Pho-
mopsis blight of strawberry was greater compared to using the
Horsfall and Barratt (H-B) scale (Nita et al., 2003) and also
to compare reliability of different assessment measures (lesion
numbers and severity of citrus canker) by Bock et al. (2008a).
The results showed that lesion number was the most reliably
estimated compared to percent area necrotic or percent area
necrotic+chlorotic. Madden et al. (2007) considers ρ a better
indicator of reliability and general agreement than the correla-
tion coefficient (r) as it is generally smaller than r , and has the
advantage that it can be calculated for multiple raters, methods
and assessment times and incorporates a measure of general
agreement.

Stonehouse (1994) used ANOVA to show differences among
raters in the level of agreement with an image analysis standard,
and other studies have used ANOVA and means separation to
directly compare visual estimates of disease and image analysis
measurement for comparing cultivars (Todd and Kommedahl,
1994; Niemira et al., 1999). Todd and Kommedahl (1994)
applied Duncan’s multiple range test to show that image anal-
ysis data provided superior means separations of isolate and
variety compared to visual analysis. These techniques have
also been used to compare image analysis measurements and
molecular quantification of pathogens (Jackson et al., 2007).
Finally, it should be mentioned that where data are not nor-
mally distributed, or for nonparametric data sets (ordinal scales
and some interval scales) both image analysis measurements,
rater assessments and actual values have been compared using
non-parametric methods such as the Kruskal-Wallis analysis of
variance (Olmstead et al., 2001). In this case the data suggested
that visual raters were more precise than image analysis.

2. The Correlation Coefficient
Correlation analysis measures the strength and nature (pos-

itive or negative) of the association between estimated disease
and the actual values or between individual rater or method es-
timates, but it gives no insight into the relationship between the

two variables. The statistic, the correlation coefficient, r , ranges
from -1.0 to +1.0 and is calculated:

r =
⎛
⎝ ∑

(x − x̄)(y − ȳ)√∑
(x − x̄)2

∑
(y − ȳ)2

⎞
⎠

Where x is the actual value, x̄ is the mean actual value, y

is the estimate and ȳ is the mean estimate. There are different
correlation methods, the most commonly used being Pearson’s
product-moment correlation coefficient, which is a parametric
statistic, and thus usually applied to continuous, normally dis-
tributed data and is generally pertinent to use for measures of
disease severity. Correlation has been used in assessing inter-
and intrarater (method) reliability (Shokes, et al., 1987; Nita
et al. 2003; Bock et al., 2008a, 2009b). As noted above, statis-
tically speaking, correlation analysis defining variability can be
considered as a measure of precision. However, in measurement
science where there is a need to accommodate the concepts of
agreement it is not entirely synonymous and it is preferential to
use the term reliability when comparing raters or methods in the
absence of actual values (Madden et al., 2007). Furthermore, the
correlation coefficient does not measure closeness to an actual
value, the nature of the relationship, bias or error (Nutter and
Schulz, 1995). A high correlation coefficient (+/−1, or close to
+/−1) does not mean that the estimates are close to the actual
values, as on average they can be much greater or less, and still
return a high r value (see Figure 1), and in this respect the intra-
class correlation coefficient described above is more powerful
for discerning reliability of measurement.

Shokes et al. (1987) used correlation analysis to show im-
provement in repeat assessments, and to identify the more reli-
ably estimated indicators of disease severity. Some raters were
more reliable in repeat estimates of disease, and estimates of
some symptoms (defoliation) were less reliable compared to
disease severity estimates. Nita et al. (2003) showed direct dis-
ease estimation (r = 0.81-0.97) was more reliable than estimates
based on the Horsfall-Barratt (H-B) interval scale (Horsfall and
Barratt, 1945, r = 0.72-0.94). Similarly, direct estimation of
the severity of citrus canker was more reliable than the H-B
scale-based estimates (Bock et al., 2009b).

3. Regression Analysis
Regression analysis is a well-known tool that has been used

to investigate various aspects of error in disease assessment
(Sherwood et al., 1983; Bock et al., 2008b) and reliability, preci-
sion and accuracy of measured or estimated data (Amanat, 1976;
Nutter et al., 1993; Nutter and Schulz, 1995; Parker et al., 1995a
and b; Guan and Nutter, 2003; Nutter and Esker, 2006; Nutter
et al., 2006). However, it should be applied with awareness
that erroneous conclusions might be drawn from the analysis
under certain circumstances (Lin, 1989; Madden et al., 2007).
Nonetheless, it does remain an invaluable tool for exploring the
relationships between variables in plant disease assessment.
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Linear regression compares a series of paired observations
(estimated disease and actual disease values) which are des-
ignated as X and Y . The dependent variable Y is assumed to
depend on X, the independent variable. Estimated disease is
typically the Y variable in regression analysis. Linear regres-
sion analysis draws a line of best fit that minimizes the sum of
the squared deviations of the estimated from the actual disease.
Various different statistics are used to assess the relationship
between X and Y . These have been described in some detail
in studies of disease assessment, and are briefly reiterated here
(Nutter and Schulz, 1995; Nutter, 2002; Bock et al., 2008a).
The slope, and intercept, and associated standard errors can
be calculated for the regression solution and are indicative of
the quality (accuracy and/or precision) of the disease severity
estimates depending on whether the disease severity estimates
are being regressed against actual values or against other dis-
ease severity estimates. If slope = 1 and intercept = 0, and
coefficient of determination, r2 = 1.00, the assessments are
perfectly accurate when estimates are being compared to actual
values (if there is deviation of the slope and/or intercept from
expected values then there is bias, and thus loss in accuracy of
the estimates compared to the actual values). If the data being
compared do not include actual values, the slope and intercept
of the regression can only be used to explore inter- or intrarater
reliability (precision). The coefficient of determination (r2), like
the correlation coefficient, is a measure of reliability. Statisti-
cally, it describes the proportion of variability accounted for
by the regression model and provides a measure of the propor-
tion of overlapping variance (how much X explains Y , Nutter
and Schulz, 1995). The coefficient of variation (CV) of the re-
gression can also be calculated and provides a dimensionless,
standardized estimate of the amount of error associated with the
estimates in the regression model (Nutter and Schulz, 1995),
and is calculated:

CV =
(√

MSE
/
x̄

)
x100

Where MSE is the mean square error and x̄ is the mean for
the sample. A high CV is indicative of poor precision (Nutter
et al., 1993), and can be used in interrater or method compar-
isons of reliability. The standard error of the Y -estimate can
also be calculated to indicate precision (Nutter and Schulz,
1995). The standard error of the Y -estimate offers additional
information beyond the CV as it indicates the error involved
in the actual prediction, compared to the overall error indi-
cated by the CV. The standard error of the estimate (σypred) is
calculated:

σypred = σy

√
1 − r2

Where σy is the standard deviation of the dependent variable
Y , and r is the correlation coefficient between X and Y . The
residual plots of the regression analysis (the vertical distance

of each Y point from the regression line vs actual disease-
estimated) should always be checked as they provide insight into
the applicability of, and assumptions underlying the regression
analysis (Gomes et al., 2004; Andrade et al., 2005; Belasque
et al., 2005). If there is evidence of heteroscedasticity (non-
constant variance with magnitude of X) some of the assumptions
of the regression might be violated, although if using robust
standard errors heteroscedasticity is less critical (SAS, 2004).
There are various tests for heteroscedasticity, including White’s
and Breush-Pagan’s tests (Breusch and Pagan, 1979; White,
1980; SAS, 2004; Bock et al., 2008b). Both tests are based on
the residuals of the fitted regression model, but White’s test is
more general and makes no assumptions about the form of the
heteroscedasticity.

Regression analysis has been widely used to demonstrate
interrater (method) reliability (Smith et al., 1969; Nutter et al.,
1993; Newton and Hackett, 1994; Nutter and Schulz, 1995;
Parker et al., 1995a and b; Guan and Nutter, 2003; Bock et al.,
2008a), intrarater (method) reliability (Newton and Hackett,
1994; Guan and Nutter, 2003; Bock et al. 2008a), accuracy
or agreement (Lindow and Webb, 1983; Nutter et al., 1993;
Nutter and Schulz, 1995; Martin and Rybicki, 1998; Olmstead
et al., 2001; Bock et al., 2008a) and also applied to show the
benefits of computer training (Nutter and Schulz, 1995; Parker
et al., 1995b) and the use of standard area diagrams, or SADs
(Hock et al., 1992; Parker et al., 1995b; Godoy et al., 1997;
Nutter et al., 1998; Leite and Amorin, 2002; Gomes et al., 2004;
Belasque et al., 2005; Godoy et al., 2006). In almost all cases
the parameters of the regression solution improved subsequent
to training. More than any other method, regression analysis has
been used to gauge the quality of assessments.

Regression analysis has also found useful application for
investigating the many factors that influence rater estimates of
disease. There are illusions in disease assessment and regression
analysis has been used to demonstrate the role of lesion number
in estimating diseased area, and the tendency to overestimate
disease at low severity (Sherwood et al., 1983; Forbes and Jeger,
1987; Nita et al., 2003; Bock et al., 2008a and 2009a). Studies
using regression analysis have confirmed a linear relationship
exists between estimated and actual disease (Forbes and Jeger,
1987; Nutter and Schulz, 1995; Nita et al., 2003; Bock et al.,
2008a). It was also used to investigate the relationship between
variance of the mean estimate of 28 raters and magnitude of
actual severity of citrus canker, showing variance of the mean
increased up to 35% disease, the maximum in that study (Bock
et al., 2008b), indicating that estimates of more severe disease
were less precise among raters.

An F -test is a useful analysis to compare regression lines
(also known as a “test of parallelism” or a “test for heterogeneity
of regression”) and ascertains whether two or more dependent
variables have different slopes and intercepts, or not. Using this
analysis, Parker et al. (1995a) were able to demonstrate that indi-
vidual rater’s were significantly different in their ability to rate
disease, and Bock et al. (2009a) showed differences between
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experienced and inexperienced raters assessing citrus canker.
The regression slopes are tested to see if there are differences in
the dependent variable (dv) due to the independent variable of
group (g) when compared to the continuous independent vari-
able, the regressor (r). A test for interaction between regressor
and group (dv = r, g, r × g) tests for the presence of group
differences which are indicated in separate slopes for the two
groups. If the interaction is not different a further test for differ-
ences in the elevation of the regression lines is required, which
is achieved by testing the reduced model (no interaction term,
dv = r, g). If there is a significant group (g) effect the two groups
have different elevations but the same slope.

Stepwise linear regression has been used to assess the fac-
tors that significantly influence raters assessing Phomopsis on
strawberry leaves (Nita et al., 2003). Stepwise linear regression
analysis showed that lesion number and size significantly con-
tributed to the error, but these sources were minor. Non-linear
regression analysis was also used to investigate the functional
relationship between estimated and actual disease severity in
the strawberry-Phomopsis pathosystem, but the non-linear func-
tions were not significant, and only improved the co-efficient of
determination by one percentage point, confirming the applica-
bility of the linear functions for this relationship.

4. Lin’s Concordance Correlation Coefficient
Lin described the reasons for evaluating measurements: “In

an assay validation or an instrument validation process, the re-
producibility of the measurements from trial to trial is of interest.
Also, when a new assay or instrument is developed, it is of in-
terest to evaluate whether the new assay can produce the results
based on a traditional gold standard assay” (Lin, 1989). Lin’s
concordance correlation coefficient has been widely used in var-
ious disciplines to quantify and compare accuracy and agree-
ment (Nita et al., 2003; Critchley et al., 2005; Trager et al.,
2006; Bock et al., 2008a), reproducibility (Richard et al., 2000;
Lin et al., 2004) and test-retest characteristics (Deen et al., 2000;
Klassen et al., 2001; Warke et al., 2001; Bock et al., 2008a) of
estimates and measurements.

The disadvantage of using regression analysis in some sit-
uations to quantify accuracy or agreement was previously ad-
dressed (Lin, 1989; Madden et al., 2007). The claim was that
regression analysis did not detect departure from intercept 0 and
slope 1 if data are very scattered (the less precise the data, the
less likely the hypothesis will be rejected), and conversely a
highly reproducible system could be rejected due to very small
error. This observation prompted Lin (1989) to develop a new
concordance correlation coefficient. The coefficient has been
called “Lin’s concordance correlation coefficient”; it provides
an unbiased and quantifiable method to test accuracy or agree-
ment. The analysis calculates and evaluates the degree to which
pairs of observations fall on the concordance line of 45◦ (slope
= 1, intercept = 0), and the concordance correlation coefficient,
ρc, combines the measures of accuracy and precision to assess

the relational fit to the line of concordance (45◦):

ρc = rCb,

Where Cb is a bias correction factor that measures how far
the best-fit line deviates from 45◦ and is thus a measure of bias or
accuracy, and r , the previously described correlation coefficient
between X and Y , which measures in this case, the precision of
the best fit line. Cb the bias correction factor is derived from:

Cb =
[(

υ + 1/υ + u2
)/

2

]−1
,

where υ = σx/σy
, where σ is the variance of X and Y , respec-

tively; and u = (µx − µy)/√σxσy
, where µ is the mean value of

X and Y , respectively, and σ is defined as above.
The coefficient υ defines the scale, or slope, shift (1 = perfect

relation between X and Y,and deviation from 1 occurs because
bias in Y depends on the magnitude of X), and µ is the loca-
tion, or height, shift relative to the perfect relation (0 = perfect
relation between X and Y,and deviation from 0 occurs when the
means of Y and X are not the same). Other symbols are defined
as already described. Madden et al. (2007) considered Cb to be
a generalized bias correction factor as it is based on more than
just the difference between the means, including measuring the
effect of magnitude of X on the estimate (the scale shift) – or
where the variance of the estimate varies with X.

Perfect accuracy (yet some loss in precision) is found when
the fitted line falls on the line of concordance, but data points are
scattered (or imprecise, Figure 3A). A location shift occurs when
there is a constant bias in Y across the range of magnitude of X

(Figure 3B), and a scale shift occur when there is a systematic
bias in the magnitude of Y that is influenced by the magni-
tude of X (Figure 3C). A perfect relationship is shown when
the fitted line and data points fall on the line of concordance
(Figure 3D). There are an infinite range of possibilities between
these scenarios.

Lin’s concordance correlation coefficient has only relatively
recently been used to analyze how well disease assessment data
relate to actual values or relate to repeat estimates (Nita et al.,
2003; Bock et al., 2008a, 2009a, 2009b). Relating estimated to
actual disease severity, Nita et al. (2003) found that a group
of six raters returned ρc values of 0.82-0.93 when assessing
Phomopsis severity on strawberry, showing reasonable to good
agreement (Figure 4). There were losses in precision or accu-
racy due to bias for each of the raters. Similar results were
found with citrus canker estimates (Bock et al., 2008a). In this
study, Lin’s concordance correlation coefficient was also used to
characterize repeat estimates by raters and image analysis esti-
mating citrus canker. It demonstrated that repeat measurements
of all disease symptoms (lesion number or percent area dis-
eased) were more consistent using image analysis compared to
visual estimates by raters. Not only were the image analysis
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C. D. 

FIG. 3. Lin’s concordance correlation coefficient for agreement and the terms used to measure accuracy and precision in relation to an actual value, or for
comparing methods, or raters for elucidating characteristics of reproducibility (interrater) and test-retest data (intrarater). A. The fitted line falls perfectly on the
line of concordance showing no bias in estimates (Cb = 1) due to scale or location shifts, but the measurements are imprecise (r < 1); B. The fitted line shows a
consistent difference in elevation compared to the concordance line – a location shift (u >0) and a loss in precision (r < 1); C. The fitted line shows a scale shift
(υ > 0), bias (variance) is not consistent with magnitude of X, a location shift (u >0), and data are imprecise (r < 1); D. Shows perfect precision and complete
accuracy, and thus complete agreement between X and Y , and no bias due to scale (υ = 1) or location shift ( u = 0) (after Nita et al., 2003 and Madden et al., 2007).

repeat estimates more reliable, they also showed much less
bias.

Where data is not on a continuous ratio or interval scale,
and comprises ordinal category values agreement can be de-
termined using Cohen’s weighted kappa statistic, which is a
non-parametric analogue to Lin’s concordance correlation co-
efficient (Madden et al., 2007).

5. Other Methods to Explore the Quality of the Estimate or
Measurement

There are various other methods that have been used in mea-
suring quality of disease severity assessments. These are very
briefly considered.

Bland-Altman plots (Bland and Altman, 1986, 1999) can
be used to assess the characteristics of the reproducibility and

bias within and among rating methods and provide insight into
inter- and intrarater reliability and agreement. They have been
widely used in clinical assays to assess accuracy and precision
of medical and pharmaceutical tests (Bland and Altman, 1999).
The plots show the difference (estimated − actual) against
the mean value. The plot can readily detect absolute system-
atic error, proportional error or heterogeneity of variance. The
reliability can be tested statistically with the coefficient of re-
peatability (CR) where:

CR = 1.96

√∑
(d2 − d1)2

n − 1

d2 and d1 are the sample data for the two assessments,
respectively, and n is the number of leaves assessed. Agreement
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FIG. 4. Lin’s concordance correlation analysis of estimated disease severity
of Phomopsis leaf blight of strawberry, based on direct visual estimation, versus
actual severity for six raters. The solid line is the concordance line, represent-
ing perfect agreement between actual and estimated severity. The broken line
is the best fitting line. Accuracy is determined with Lin’s (Lin et al., 1989)
concordance correlation coefficient (ρc), calculated as the product of the cor-
relation coefficient (r) and the bias correction factor (Cb). Cb is a function of
location shift (u) and scale shift (υ), indicating changes in line height and slope,
respectively (after Nita et al., 2003).

with actual data can be tested based on the 95% limits of
agreement (Bland and Altman, 1999), by taking the mean
difference d, and the standard deviation of the difference σd ,
such that the 95% agreement limit is equal to d +/−1.96 ×
σd . Bland-Altman plots have been used to demonstrate trends
in rater agreement and reliability in studies of citrus canker
assessment (Bock et al., 2008b).

The absolute error (estimate minus actual disease) and rela-
tive error (absolute error ÷ actual severity x 100) can be calcu-
lated for the mean estimate at each actual severity to describe
how actual disease severity is related to inaccuracy and impre-
cision of the estimate over the range of disease assessed. Hock
et al. (1992) used absolute error to demonstrate characteristics of
individual raters in assessing tar spot of maize, and also showed

how mean relative error was influenced by lesion size. Bock
et al. (2008b) showed that the mean absolute error increased
with greater disease severity. Relative error was greatest at low
disease severity (up to nearly 600% overestimation).

Frequency plots of disease severity estimates can be made
and provide an insight where data are biased or imprecise.
They can be useful for exploring trends and showing differ-
ences among methods or symptoms (Bock et al., 2008b). The
relationships between frequency of rater estimates and actual
disease clearly demonstrated the preference raters had for spe-
cific values (resulting in clusters of estimates known as “knots”;
Koch and Hau, 1980; Hau et al., 1989; Bock et al., 2008b,
2009b). Frequency of discrepancy of the estimate from the ac-
tual value has been fit to a normal probability density function
for different disease categories and provided a basis for compar-
ing estimation error over different disease ranges (Bock et al.,
2008b). The resulting parameters suggested that the difference
between the actual value and the estimate increased with actual
disease severity.

The methods described above have been used to explore
the characteristics, sources of error, accuracy, precision and
agreement of disease estimates and measurements using vi-
sual rating of various types, image analysis and hyperspectral
imagery.

IV. VISUAL ASSESSMENT

A. How the Eye Works
The eye acts as a remote sensing device, and combined with

the brain acts as an image analysis system (Nilsson, 1995; de
Jong et al., 2006). The way the eye functions and creates an
image compares with the way a camera operates. The focusing
section is the cornea, which takes widely diverging rays of light
and bends them through the pupil (which is surrounded by the
iris). The iris and the pupil perform the function of the aperture
of a camera. The inbound light then encounters the lens, which
helps focus light on the retina at the back of the eye. The retina is
coated in photoreceptor nerve cells which convert light rays into
electrical impulses and sends them through the optic nerve to
the brain, where they are translated and perceived as an image.
The sharp vision, as when concentrating on an individual leaf,
or reading a book, as now, takes place in the center 10% of
the retina, which is called the macula, the rest of the retina
being responsible for peripheral vision. The eye and the relevant
parts of the brain work together extremely rapidly to acquire
the image, analyze and interpret it (Hubel, 1995). This process
allows individuals to estimate the type and quantity of disease
tissue on a particular leaf or plant. The response of visual raters
is not the same every time, and is dependent on several factors,
some of which are known. There are individual differences in
how light and color are perceived among individuals, and thus
in estimating disease – quite apart from the cognitive ability
to estimate disease that might vary with individual and with
assessment occasion. Conditions such as color blindness have
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also been demonstrated to influence ability to estimate disease
(Nilsson, 1995).

There have been great strides made in our understanding of
factors that contribute to the quality of a visual disease assess-
ment or measurement over the last thirty years and this informa-
tion has been used to develop ways of improving rater ability, a
process which continues (Horsfall, 1945; Chester, 1950; Large,
1966; James, 1971; Horsfall and Cowling, 1978; Berger, 1980;
Nutter et al., 2006).

B. Rater Error and Its Ramifications
Large differences can exist between raters assessing the same

leaves (or other plant organs) for disease severity, showing rater
reliability and agreement with actual values can be variable
(Nutter and Schulz, 1995; Parker et al., 1995a and b; Bock
et al., 2008a). The diversity and frequent lack of inter- and in-
trarater reliability and agreement with actual values is caused
by several factors that can be identified (Sherwood et al., 1983;
Nutter and Schulz, 1995; Bock et al., 2008a, b). The ramifi-
cations of inconsistent and mediocre disease assessments can
be important. Nonetheless, gross differences in disease severity
will most often be detected even by poor estimates, but in cer-
tain situations lack of reliability and/or agreement might lead
to different outcomes of a statistical analysis. For example, in
a fungicide trial the null hypothesis (Ho) would be that there
was no effect of fungicide treatment compared to the control in
reducing disease severity. If rater disease assessments failed to
show an effect of fungicide when there actually is a reduction
in disease, then a Type II error would be committed (failure to
reject H0 when H0 is false, Everitt, 1998). Visual assessment can
fail to discern differences among treatments where more objec-
tive measures do (Parker et al., 1995a and b). In other words
the experiment failed to prove the primary hypothesis (H1) and
demonstrated that visual estimates did not discern significant
effects among treatments, whereas the actual disease severities
demonstrated significant differences. Furthermore, methods of
assessing the disease (or pathogen) can influence epidemiolog-
ical studies where disease progress might be modeled (Nutter,
1997b; Nutter, 2001), or for discerning sources of disease resis-
tance among germplasm (Jackson et al., 2007).

C. Sources of Error
Visual disease severity estimation is error prone. Since the

early years of plant pathology this has been accepted, but it is
only recently the understanding of these sources of error have
been placed on an empirical footing. Indeed, the first study that
quantified error associated with a visual assessment, and accom-
modated for it was that by Smith et al. (1969), who described
error in visual estimates of percent area compared to the actual
severity on tomato infected with Cladosporium leaf mold in the
UK. Since that time many sources of error in rater assessment
have been identified and quantified in many pathosystems. The
many sources and causes of error include:

TABLE 2
Intra- and interrater reliability and accuracy of visual

assessments of dollar spot severity on bentgrass. Percent area
showing symptoms in 1m2 quadrats were estimated.

Regression analysis1 was used to compare estimates among
assessments, raters and against actual values (after Nutter

et al., 1993).

Regression parameters

Rater variable Scorer r2 Slope y-intercept

Intrarater reliability Rater 1 0.93 0.93 0.74
Rater 2 0.83 0.80 −0.54
Rater 3 0.84 0.88 0.76
Rater 4 0.88 0.93 −2.66

Interrater reliability Rater 1/Rater 2 0.77 0.82 6.95
Rater 1/Rater 3 0.77 0.74 2.33
Rater 1/Rater 4 0.89 0.74 2.98
Rater 2/Rater 3 0.70 0.76 −0.42
Rater 2/Rater 4 0.80 0.77 0.60
Rater 3/Rater 4 0.86 0.88 6.01

Accuracy Rater 1 0.83 1.4 4.7
Rater 2 0.79 1.0 19.6
Rater 3 0.96 1.1 1.3
Rater 4 0.97 0.9 12.9

1Linear regression analysis (y = a +bx) was used to compare es-
timates to the actual values. The coefficient of determination (r2) in-
dicates the precision of the estimates, and the slope and y-intercept
indicate bias.

1. Individuals Vary in Their Intrinsic Ability
Various studies with different pathosystems have shown that

individuals vary in ability. Measures of agreement, inter- and
intrarater reliability all point to differences among individuals,
and individual variability between assessments (Amanat, 1976,
1977; Sherwood et al., 1983; Hau et al., 1989; Nutter et al.,
1993; Newton and Hackett, 1994; Guan and Nutter, 2003; Nita
et al., 2003; Bock et al., 2008a and 2009b). Based on regression
analysis, Nutter et al. (1993) assessed dollar spot (caused by
Sclerotinia homoeocarpa) on bent grass Agrostis palustris and
showed both inter- and intra rater reliability was variable be-
tween and among raters, and agreement with actual values var-
ied among individuals (Table 2). Sherwood et al. (1983) found
that individuals varied among and between both experienced
and inexperienced groups of raters in ability to rate symptoms
caused by Stagonospora arenaria on orchard grass. Newton and
Hackett (1994) also found inexperienced and experienced raters
varied in ability to assess Erysiphe on barley; experienced raters
tended to be better at estimating disease and responded less
to training using disease assessment training programs. There
are some common patterns in error reported. Nutter and Schulz
(1995) showed agreement of 80 raters with actual values was
variable using computer images of diseased leaves, and the raters
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FIG. 5. The frequency of “knots” or preferred values with twenty-eight raters assessing 200 leaves for the percent area infected (area necrotic+chlorotic) by
citrus canker. Arrows mark knots where raters appear to prefer specific values when estimating area at most severities greater than 10% (after Bock et al., 2008b).

fell into three identifiable categories – among these raters the
most common perception was a V shaped pattern, with absolute
error greater and more negative between 25 and 35% severity,
another group underestimated disease more with increasing ac-
tual disease severity, and a third group showed absolute error
at its highest at 50% disease. Other patterns exist – for exam-
ple, a tendency to overestimate disease increasingly at higher
disease severity (Newton and Hackett, 1994; Bock et al., 2008a
and 2009b). Bock et al. (2008a) found reliability varied be-
tween first and second assessments, and individual raters were
not constant in the direction or magnitude of their error. Guan
and Nutter (2003) found that reliability of intrarater assess-
ment estimates for four raters was poor (as measured by the
coefficient of determination, r2 = 0.16-0.95), and Bock et al.
(2008a) found intrarater reliability of estimates by three plant
pathologists was somewhat variable (correlation coefficient, r =
0.86-0.89). The raters showed reasonable agreement with actual
values measured with Lin’s concordance correlation coefficient
(ρc = 0.82-0.90).

2. Value Preferences by Raters
Koch and Hau (1980) and Hau et al., (1989) provided data

that showed individuals appeared to prefer specific values when
estimating disease – they more frequently chose these values
compared to what would be expected if estimation was random
around the actual disease. These “knots” as they are known, have
been observed in other studies, and were observed in direct es-
timation of citrus canker severity (Bock et al., 2008b, Figure 5),
and in estimates of Erisyphe infection on barley where there was
a tendency to assess severity with values close to that of standard
area diagrams (SADs) being used (Parker et al., 1995b). Thus
there is some evidence of raters choosing “preferred values,” but
this tendency has not been fully explored.

3. Lesion Number and Size Relative to Area Infected
Amanat (1976) found that areas under large lesions were

estimated with less error than small lesions of the same area,
a result also reported by Hau et al. (1989). Working with
the Stagonospora/orchard grass pathosystem, Sherwood et al.
(1983) demonstrated error due to lesion numbers – overestima-
tion was inversely proportional to the natural logarithm of the

FIG. 6. A. The relationship between rater (Y ) estimates of area and actual
diseased area (A), lines drawn showed that number of lesions (N ) was a signif-
icant factor for most raters. B. The relationship between estimated area:actual
area symptomatic (Y ) vs. natural log of the actual area infected (A) and show an
effect of lesion number (N ) for many raters. Raters from two different groups
of experienced scorers, one routinely used SADs (solid lines) and the second
used various other systems (dashed lines). Points drawn assuming number of
spots (N ) = 15 at 1% A and N =75 at 15% A (after Sherwood et al., 1983).
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disease area, and for most raters directly proportional to the
number of lesions (Figure 6A and B). A similar relationship
exists with citrus canker on grapefruit (Bock et al., 2008b) and
with Phomopsis on strawberry (Nita et al., 2003). Forbes and
Jeger (1987) found that estimation of severity due to fewer larger
lesions were less error prone compared to small, random or
uniformly distributed lesions, and Godoy et al. (1997) observed
rater overestimation of bean rust due to large numbers of small
lesions, confirming these illusions in visual assessment. Hock
et al. (1992) also found the greatest error among raters occurred
when assessing lower disease severity with lots of small lesions
with tarspot complex on maize. In developing SADs to assess
soybean rust (Phakopsora pachyrhizi), Godoy et al. (2006)
found such overestimation was common among raters. The
overestimation of disease when there are many small lesions,
particularly at low severities, has tremendous ramifications
for epidemiological studies when projecting yield loss, where
disease progress is based on estimates of disease severity; more-
over, rater bias that overestimates actual disease severity may
adversely affect genetic advance in plant breeding programs as
well (Sherwood et al., 1983). Why do raters overestimate at low
disease severity? Relative error is greatest in this range (Bock
et al., 2008b) and it is a common disease range for many assess-
ments (<10% area). It is not possible to estimate disease less
than zero, and thus at low disease severity (at least up to 5-10%)
there is an invisible “barrier” (i.e., 0%) to underestimation of
disease, yet no “barrier” to overestimation. The cause of overes-
timation does not appear to have been fully explored, although
is now recognized (Amanat, 1976; Sherwood et al., 1983;
Beresford and Royle, 1991; Bock et al., 2008b and 2009a).

4. Actual Disease Severity
On average, do raters have closer agreement to the actual

value at low disease severity compared to mid-range disease
severity? The last thirty years has provided much data, but this
issue remains unresolved, partly because the manner in which
different studies are done (direct estimates, using SADs, individ-
ual estimates or averaging estimates) could influence estimation
error. Experiments have been done that show non-constancy
of error with actual disease severity (Kranz, 1970; Forbes and
Jeger, 1987; Hau et al., 1989; Forbes and Korva, 1994; Bock
et al., 2008b and 2009b), but there are also studies that indicate
more constant error (Nita et al., 2003; Nutter and Esker, 2006).
Forbes and Jeger (1987) found disease intensity was a signifi-
cant factor, with greater disease severity being more error prone,
with a maximum error around 25%. Koch and Hau (1980) found
that estimates of low disease severity had a much narrower range
compared to estimates of high severity, and Hau et al. (1989)
similarly reported the standard deviation of the mean of esti-
mates for 200 scores assessing leaf models of known disease
and showed that it was less at low and high levels of severity
compared to the mid range. Bock et al. (2008b and 2009a) found
that the variance of multirater direct, unaided estimates of the
actual disease increased with actual disease severity of citrus

canker on leaves of grapefruit – at least over the disease sever-
ity range assessed (0-35%) and Andrade et al., (2005) found
that error associated with estimation of leaf spot (Quambalaria
eucalypti) of Eucalyptus was greatest from 15-30%. However,
Nita et al. (2003) did not find estimation error was strongly as-
sociated with actual disease severity when comparing means of
six replicate estimates of Phomopsis on strawberry assessed on
five occasions. Comparing the estimation of 25, 37.5 and 50%
disease, Nutter and Esker (2006) used the method of comparison
stimuli to estimate the “just noticeable difference” (jnd) between
a reference stimulus (known) and a comparison, which is rated
as the same or different to the reference. In this way they showed
the jnd divided by the reference stimulus was a constant frac-
tion (Weber’s law) and ability to discern differences in disease
severity was better than suggested by the Horsfall-Barratt scale
(Horsfall and Barratt, 1945). The importance of actual disease
severity to magnitude of error remains incompletely character-
ized and doubtless related to ability of the assessor, training
and the use of SADs to assess disease (Newton and Hackett,
1994; Nutter and Schulz, 1995; Nutter and Esker, 2001; Nita
et al. 2003; Bock et al., 2008b). The characteristics of error es-
timation can depend on whether the actual disease is compared
with an individual’s estimates, raters as a group, or the mean val-
ues. Thus studies where multiple individual rater estimates were
used demonstrate increase in error with actual disease severity
(Koch and Hau, 1980; Forbes and Jeger, 1987; Hau et al., 1989;
Bock et al, 2008b, 2009b). Some data based on well-trained or
guided individuals, or on mean values might be less likely to
show increased estimation error or heterogeneity of variance due
to actual disease severity (Nita et al., 2003). It is important to
characterize all these approaches as assessments might be made
by multiple assessors, and averaging data might affect the error.
Furthermore, if the mean, or variance of the mean estimates de-
viates from the actual values, a t-test or F−test could result in
a Type II error (Parker et al., 1995a and b; Bock et al., 2009c).

Relative error, as opposed to absolute error, tends to decrease
with increasing disease (Kranz,1970; Hock et al., 1992; Bock
et al., 2009a). Beresford and Royle (1991) found that wheat
rust severity estimates at low levels were less accurate, and that
overestimation was up to 8.7 times higher than disease severity
based on uredinium spore counts. Furthermore, Kranz (1970,
1988) and Parker et al. (1995a) found greatest relative error at
low severity. These studies suggest non-constant error and that
the nature of the relationship has not been fully characterized,
although it is unlikely to be the logarithmic (y) – linear (x)
advanced by Horsfall and Barratt (Horsfall, 1945; Horsfall and
Barratt, 1945; Forbes and Korva, 1994; Nita et al., 2003; Nutter
and Esker, 2006; Bock et al., 2008a and 2009b).

5. Plant Structure and Size
The plant structure being assessed can influence the quality

of the estimate of severity. This is somewhat peripheral as this
review is more concerned with the process of assessment of
diseased area, rather than comparing sampling units on plants.
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Nonetheless, it bears mentioning as a potential source of error
among units (Townsend and Heuberger, 1943; Forbes and Jeger,
1987; Shokes et al., 1987; Christ, 1991; Vereijssen et al., 2003;
Danielsen and Munk, 2004;). Forbes and Jeger (1987) compared
assessments and found significant effects of plant structure with
mean absolute error ranging from 0.3 to 15.9% among the var-
ious plant structures assessed for disease (compound leaves,
simple leaves, stems, panicles, pods, tubers, rosette heads and
roots). Also, illustrating the importance of organ assessed in
relation to disease severity, Tinline et al. (1994) used a disease
severity scale to assess common root rot (caused by Cochliobo-
lus sativus) on varieties of wheat, and found that disease rating
of lesions on the subcrown internodes was better able to differ-
entiate cultivar response compared to the assessment of lesions
on the crowns. Furthermore, how the disease is manifested on
plant parts and the ease of assessment might influences rater
error differentially, but has not been tested across all plant part
types. The size of the unit (e.g., leaf size) on which the esti-
mate has been made has rarely been addressed. Nita et al (2003)
investigated the role of leaf size and found only a small, but sig-
nificant effect of leaflet size on severity estimation of Phomopsis
on strawberry.

6. Time Taken to Assess Disease
Parker et al. (1995b) found that the time taken by assessors

to rate disease affected precision - although fast assessments
were not always less precise, they were more often less pre-
cise compared to assessments performed slowly. There is little
other literature on the amount of time taken to assess disease
severity, although on a leaf-by-leaf basis it seems that direct vi-
sual estimates of severity take on average approximately 7 secs.
(Martin and Rybicki, 1998; Bock et al., 2009a). Nutter et al.
(1993) found that it took raters approximately 32 min. to assess
severity of Stagonospora on 80 x 1 m2 quadrats of bentgrass.

7. Color Blindness
Individuals who suffer from color blindness are impaired in

their ability to assess disease. The more severe the red/green
colorblindness, the poorer the estimation of disease severity on
golf greens (Nilsson, 1995).

8. Complexity of Symptoms and Timing
Apart from lesion size and number (see section IV.C.3), de-

ciding where the symptoms start and end can be a source of sub-
jectivity. Estimates of the necrotic areas of citrus canker might
be estimated less well than the total symptomatic area compris-
ing both chorotic and necrotic areas (Bock et al., 2008a, 2009b).
Parker et al. (1995a) commented that in the Septoria tritic/wheat
pathosystem, discerning between disease necrosis and natural
senescence might be the source of some of the error, although
there is evidence those pathogens that appear to be well defined
are not necessarily any better assessed (Parker et al., 1995a).
The timing of the disease assessment might influence the result,
demonstrating the importance of multiple disease assessments

during the season. Timing of assessments needs to be made
sensitive to the likely rate of development of symptoms. Thus
knowledge of the latent periods and timing of infection in re-
lation to crop growth are useful. Other diseases are difficult to
rate for severity due to the amorphous way in which symptoms
develop, including certain virus diseases which can present a
challenge for how best to assess them (Madden et al., 2007).
The many ways of rating these diseases are considered in a later
section. Some diseases, like huanglongbing of citrus (caused by
the bacterium Candidus liberibacter) (Gottwald et al., 2007) do
not develop symptoms for up to several months after infection,
and although infection generally results in death of the plant,
rating the progress of the disease requires a more qualitative ap-
proach to assessment. Sometimes molecular approaches can be
used to check for, or quantify the pathogen in a host population
if symptoms is unreliable. The assessment of pathogen “sever-
ity” is becoming increasingly feasible (Nutter et al., 2006). With
other diseases (particularly some that are systemic), severity can
equate to incidence (Seem, 1984; Bock and Jeger, 1996).

9. Interactions among Multiple Factors
Various studies have indicated interactions among multiple

factors, but these have rarely been explored in any detail. In
an analysis of variance among various factors, Sherwood et al.
(1983) and Bock et al. (2008b) found interactions among le-
sion number, actual area, rater group and individual rater. Nita
et al. (2003) also found multiple factors influencing estimates
of disease including actual disease, lesion number and leaflet
size, although the effects of the latter two were minor. Finally, it
should be mentioned that the sampling design and sample size
are also critical to obtaining an unbiased estimate of disease
(Steddom et al., 2005a; Madden et al., 2007).

D. Methods Used to Visually Estimate Disease Severity
Chester (1950) summarizes the development of disease as-

sessment techniques up to 1950, and the understanding and de-
velopment of methodology involved in the nascent field of plant
disease severity assessment. Large (1966), James (1974), Cooke
(2006) Nutter et al. (2006), and Madden et al (2007) provide in-
formation on various aspects of visual disease assessment since
that time. The importance of accurate and precise disease assess-
ment was recognized early. The American Phytopathological
Society (APS) established a committee in 1917 (Anon, 1917),
which met for a number of years. There were few advances
at that time (Chester, 1950), beyond modification to the Cobb
scale (Cobb, 1892) for cereal disease assessment. Some years
later (1933) the British Mycological Society (BMS) established
a similar committee to investigate ways to record and measure
disease prevalence and intensity (Beaumont et al., 1933; Moore,
1943, Large, 1955). The BMS committee developed some new
key-based scales for various crops, which were deemed use-
ful to plant disease assessment, particularly survey work, most
notably a key to assess late blight of potato (Anon., 1947),
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which bore some superficial similarity to the Horsfall-Barratt
scale (Horsfall and Cowling, 1978). In 1967 the FAO held a
conference on crop loss assessment methods (FAO, 1971), and
described sampling procedures and assessment methods for var-
ious crops. However, there was no empirical test performed to
quantify the visual assessment methods for reliability or agree-
ment compared to the actual disease severity in the field, or the
ramifications of using scale-based data in analyses. Since the
1970s our understanding of visual disease assessment has taken
on a more empirical footing, and the pros and cons of different
assessment methods are becoming better elucidated.

A consideration is warranted of the various methods used to
visually assess disease severity, both from an historic perspec-
tive and to gauge their effectiveness, application and scientific
justification today. There are different types of rating scales that
comprise continuous or discrete variables (Sheskin, 1997) to
measure disease severity. Some strive to be generic, and others
are specific to individual host-pathogen systems (Chester, 1950;
Campbell and Madden, 1990; Nutter and Esker, 2006; Madden
et al., 2007). The various kinds of scales used in visual plant
disease assessment include:

- Nominal or descriptive scales.
- Ordinal rating scale.
- Interval (category) scales (with or without standard area di-

agrams, SADs) and field keys.
- Ratio scales (with or without SADs).

1. Nominal or Descriptive Scales
These are the simplest and probably most subjective of the

scales for grading disease severity (Chester, 1950; Nutter and
Esker, 2006). Disease is graded into a number of classes with
descriptive terms such as “slight,” “moderate,” or “severe.” Due
to the subjectivity involved and lack of quantitative definition,
these scales have very limited value beyond the individual per-
forming the rating in a particular season and location.

2. Ordinal Scales
These are descriptive disease scales, but they grade disease

severity into arbitrary classes that represent increasing severity
of symptoms. Newell and Tysdal (1945) used such a scale to
measure alfalfa disease severity based on the subjective scale of
1 = very little disease, 5 = medium disease and 9 = very much
disease. Very simple ordinal scales of this type are subjective
and not particularly transferrable between raters, locations or
seasons (Chester, 1950). Ordinal scales can be based on, or ac-
companied by, diagrams or descriptions indicating the intensity
of symptoms. One such example is the ordinal scale developed
to assess symptoms of southern corn leaf blight (Helminthospo-
rium turcicum) on corn that was developed in the 1940s and
related directly to a set of diagrams to aid estimation of the
descriptive severity (Ullstrup et al., 1945). Another example is
the nine-point ordinal scale developed to measure severity of

TABLE 3
A 0-5 scale used to assess the severity of symptoms of zucchini

yellow mosaic virus and watermelon mosaic virus on water
melon (after Xu et al., 2004).

0 no symptoms;
1 slightly mosaic on leaves;
2 mosaic patches and/or necrotic spots on leaves;
3 leaves near apical meristem deformed slightly, yellow, and

reduced in size;
4 apical meristem with mosaic and deformation; and
5 extensive mosaic and serious deformation of leaves, (or

plant dead).

fungal pathogens (Puccinia arachidis and Cercosporidium per-
sonatum) on peanut (Subrahmanyam et al., 1982). The scale
relied on descriptions of the symptoms and was used to assess
genotypes for resistance in the breeding program at the Interna-
tional Crops Research Institute for the Semi-Arid Tropics.

Ordinal scales are still quite widely used for specific diseases,
particularly for rating some virus diseases where symptoms are
not easy to measure quantitatively (Madden et al., 2007). Al-
locating a number to a symptom description allows the stage
of development of the disease to be numerically assessed or
denoted. For example, zucchini yellow mosaic virus and water-
melon mosaic virus on water melon have been rated on a 0–5
scale (Xu et al., 2004, Table 3). There is inevitably still a risk of
subjectivity in these scales, and there are some situations where
more quantitative alternatives are difficult to devise. There are
some advantages to ordinal rating scales particularly that they
often describe the disease development as the symptoms become
increasingly severe and thus can be interpreted by the rater. They
are also easy to learn and use, albeit somewhat subjectively, and
provide a rapid way for assessing large numbers of plants, as
might sometimes be the need in plant breeding programs. Stan-
dard sets of illustrations that show the symptom characteristics
of each category allow more objective assessment, but because
the ratings values are arbitrary they have less interrater, inter-site
or temporal consistency. Because of the nature of ordinal data
it should be analyzed using non-parametric tests, which are be-
coming more sophisticated and powerful for these types of data
(Shah and Madden, 2004; Madden et al., 2007), although some
other options are sometimes applied to allow parametric test-
ing, including converting the ordinal scale to a disease severity
index (Chaube and Singh, 1991). The calculation of the disease
severity index is described in section IV.G.

3. Interval or Category Scales
A disease interval (or category) scale comprises a number of

categories where the numeric values are known – in the case of
plant disease this is generally the percent area with symptoms.
The first interval scale developed and used was the Cobb scale
(Cobb, 1892) to assess severity of rusts on wheat in Australia.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
S
D
A
 
N
a
t
i
o
n
a
l
 
A
g
r
i
c
u
l
t
u
r
a
l
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
5
:
1
1
 
3
0
 
J
u
n
e
 
2
0
1
0



76 C. H. BOCK ET AL.

The scale included a standard area diagram (SAD) set that had
five levels of rust 1–5 (representing 1, 5, 10, 20 and 50% dis-
ease), and the rater placed the sample leaf in the most appropriate
category. This diagrammatic scale was modified over the years
to improve accuracy (Melchers and Parker, 1922; Peterson et al.,
1948). Like the Cobb scale, other disease assessment interval
scales are often accompanied by SADs (Chester, 1950; Large,
1966). The development of these scales was spurred on by the
perception that descriptive scales were less-than-ideal, indeed
McKinney (1923) and Horsfall and Heuberger (1942) developed
early interval scales to assess disease severity in a more quan-
titative way (Table 4). Disease scales were, and still are widely
perceived as a way to save time in disease assessment, assumed
to be quick to learn and thus allot a score, and in some cases
control perceived error in disease assessment (Horsfall and Bar-
ratt, 1945). Some interval scales can be analyzed directly, but
they are often converted to a disease index, providing a continu-
ous variable which is amenable to parametric statistical analysis
(Marsh et al., 1937; Horsfall and Heuberger, 1942; Horsfall and
Barratt, 1945; Chester, 1950; Chaube and Singh, 1991; Shah
and Madden, 2004). Interval scales are still widely used (Bru-
ton et al., 2000; Harveson and Rush, 2002). For example, Tinline
et al. (1979; 1994) developed a scale to ascribe disease severity
on wheat and barley. Plants were assigned a severity rating from
a 4-category scale where 0 = healthy, 1-25% = slight, 26-50%
moderate and >50% severe, with values of 0, 1, 2 and 5 being
applied to wheat and 0, 2, 5 and 10 being assigned to barley for
the four categories.

The intervals of some disease assessment scales are unequal
and bear similarity to the well-known Horsfall and Barratt (H-B)
scale (Horsfall and Barratt, 1945). Horsfall and Barratt (1945),
Horsfall (1945) and Horsfall and Cowling (1978) noted that
many rating scales resulted in high mean scores, especially
where actual disease severity might be at the lower end of a
category, and because grades were so broad it was difficult to
show differences, particularly at these low or high levels of dis-
ease. They also believed it did not reflect innate human ability
to distinguish disease severity based on their “discovery” of the
so-called Weber-Fechner Law which was described thus “. . . the
Weber-Fechner law which states that visual acuity depends on
the logarithm of the intensity of the stimulus.” (Horsfall, 1945).

TABLE 4
Horsfall and Heuberger (1942) developed early interval scales

to assess disease severity in a more quantitative way.

Category Severity

0 apparently infection-free;
1 trace-25% leaf area infected;
2 26-50% leaf area infected;
3 51-75% leaf area infected;
4 >75% leaf area infected.

To this end Horsfall and Barratt (1945) developed a new cate-
gory scale that they believed addressed these issues. This scale
became known as the H-B scale. It is a widely applied scale
and has been used in several disciplines beyond plant pathology
and cited at least 571 times (Web of Science, 2009). Indeed,
the H-B scale, or modified versions of the H-B scale are proba-
bly the most widely used rating systems over the last 70 years,
and it was formulated on a very limited empirical base. Be-
cause the wide usage of the H-B scale, it is worth spending time
examining it in some detail. It has 12 categories of unequal, log-
arithmic structure (0–100% disease) symmetrical around 50%.
The symmetry around 50% was explained by Horsfall and Bar-
ratt’s (1945) realization that the eye reads diseased tissue below
50% severity, and healthy tissue above 50% severity (Table 5).
Horsfall and Barratt (1945) and Horsfall (1945) stipulated the
need for a large sample in disease estimation using this method
(preferably a sample size of at least 20). Analysis of data from
these unequal-interval scales had to be approached in a unique
way. Initially a chart graphed on semi-log paper was used to re-
late mean disease by category on the X-axis to mean estimated
% on the Y -axis (Horsfall, 1945; Horsfall and Barratt, 1945).
However, it was realized that recalibration after taking the arith-
metic mean of the grades lead to unacceptable bias (Redman
et al., 1968), and recalibration of each allotted category to the
interval mid-point was required prior to taking the mean, and
analysis; eventually a set of tables was developed specifically for
this purpose (Redman et al., 1968). Mid-point recalibration pro-
vided data acceptable for analysis using parametric approaches.
But it also appears to reinstate variance the scale sought to re-
move in the first place (Bock et al., 2009d). Furthermore, the
H-B scale was first described with categories of 1–12 (Horsfall
and Barratt, 1945), but was shown on a recalibration chart to

TABLE 5
The Horsfall and Barratt interval scale showing the disease
severity ranges, midpoints and interval sizes (Horsfall and

Barratt, 1945).

Disease severity Interval
H-B category range Midpoint size

1 0 0 0
2 0+–3 2.34 3
3 3+–6 4.69 3
4 6+–12 9.38 6
5 12+–25 18.75 13
6 25+–50 37.50 25
7 50+–75 62.50 25
8 75+–87 81.25 13
9 87+–94 90.62 6

10 94+–97 95.31 3
11 97+–100 97.66 3
12 100 100 0
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be a 0-11 scale (Horsfall, 1945; Horsfall and Cowling, 1978).
Although the calibration curve is defunct, it is important to be
clear which version of the scale is being used as it could affect
the calibration (choice of mid-point value).

Since the development of the H-B scale it was revealed the
Weber-Fechner law per se never existed. It comprises two laws,
Weber’s law and Fechner’s law (Baird and Noma, 1978; Nut-
ter and Esker, 2006). Unfortunately, Horsfall and Barratt were
neither explicit about where they obtained information on this
law (no citation was ever given), nor what their understanding
and interpretation of it really was. Weber’s law actually states
that the physical size of a just noticeable difference is a constant
proportion of the value of the standard for a given dimension;
and Fechner’s law, which assumes Weber’s law, adds that the
subjective value is a logarithmic function of the physical value
(Baird and Norma, 1978; Birnbaum, 1994; Nutter and Esker,
2006). Thus, the H-B scale was presumably designed to take
into account a perceived (but untested at the time) hypothe-
sis that estimated disease (perceived disease) was in some way
logarithmically related to actual disease.

Disease severity estimation falls within the realm of psy-
chophysics, which is the study of the relationships between
physical stimuli and their subjective correlates, or percepts. The
logarithmic assumptions described by the Fechner law have been
questioned, and this has cast the rationale for the H-B scale in
doubt (Stevens, 1961; Hebert, 1982, Nutter and Schulz, 1995;
Nutter and Esker, 2006). There are several ways in which esti-
mates and the actual magnitude of a stimulus relate to each other
and include linear, power function or perhaps logarithmic rela-
tionships for some kinds of stimuli (Stevens and Galanter, 1957;
Baird and Norma 1978; Birnbaum, 1994). Indeed, there remains
some controversy regarding the understanding and applicability
of different functions to various stimuli, and the possibility of a
unifying psychophysical law that incorporates various relation-
ships (including Fechner’s) has been postulated (Kreuger, 1989;
Norwich and Wong, 1997). Various methods exist to test percep-
tion of stimuli (Stevens and Galanter, 1957; Baird and Norma
1978; Birnbaum, 1994; Ehrenstein and Ehrenstein, 1999; Nutter
and Esker, 2006) and all evidence to date shows a linear rela-
tionship between visually estimated and actual disease severity
(Sherwood et al., 1983; Forbes and Korva, 1994; Nita et al.,
2003; Nutter and Esker, 2006; Bock et al., 2008a).

However, the nature of the relationship between the error (or
variance) of the estimate and the actual disease has not been
completely established. As already noted, individuals vary in
the characteristics of their ability to estimate disease, and this
can include varying degrees of under and/or overestimation and
is affected by the use of SADs, training and the innate ability
of the rater, and the symptoms themselves (Sherwood et al.,
1983; Hock et al., 1992; Nutter and Schulz, 1995; Bock et al.,
2008a). Some results indicate non-constancy of variance asso-
ciated with increasing magnitude of actual disease, at least up
to 25% severity (Redman and Brown, 1964; Smith et al., 1969;
Koch and Hau, 1980; Forbes and Jeger, 1987; Hau et al., 1989;

Bock et al., 2008b and 2009a). It should be stressed that this
relationship is not necessarily logarithmic, or over the complete
range of disease severity. Others have found little effect of mag-
nitude of actual disease on estimation error (Nita et al., 2003;
Nutter and Esker, 2006). Apart from contrasting results, differ-
ences in how the studies were conducted, and the data processed
and analyzed might affect conclusions (including use of indi-
vidual, multiple rater, or averaged data). Thus the relationship
between estimation error (both relative and absolute error) and
actual disease remains to be fully explored and explained under
different conditions.

At least four studies have indicated that there is nothing to be
gained in accuracy or precision by applying the H-B scale com-
pared to direct estimation of disease severity, and in some cases it
might be detrimental (Forbes and Korva, 1994; Nita et al., 2003,
Nutter and Esker, 2006; Bock et al., 2009c). Although use of the
scale itself might standardize variance across a range of actual
disease, it has to be reconverted to percent midpoints for analy-
sis and thus transforming the raw direct estimate of percent area
could achieve the same end (Forbes and Korva, 1994). And it
remains to be demonstrated whether applying a 12-point scale
with unequal categories like the H-B scale to estimate disease
severity of individual leaves or plants is really faster than direct
percent estimation – especially considering the unequal cate-
gories in the H-B scale, of which assessors must be aware, and
the possibility that assessors might unconsciously linearize the
intervals when using it directly in the field (Forbes and Korva,
1994). Considering how fundamental disease assessment is to
plant pathology, it is surprising these relationships between as-
sessment methods are not more fully understood. Furthermore,
in recent studies, (Bock et al. 2009d) simulated the disease as-
sessment process and hypothesis testing using data from both
direct estimation to the nearest per cent and the H-B scale, and
the results suggested that use of the H-B scale resulted (in some
situations) in a failure to reject the null hypothesis, (H0), when
H0 was false (a type II error). A type II error leads to incorrect
conclusions and/or actions as the statistical test fails to detect a
significant difference, when in fact there is a difference.

Berger (1980) discusses various ways to assess disease inten-
sity, and the importance of good quality estimates to ensure pro-
jections of yield loss and epidemic development, and addresses
particular problems regarding estimates of a mid-range sever-
ity and very low disease severity using the H-B scale. Horsfall
and Barratt (1945; Horsfall and Cowling 1978) stipulated mul-
tiple readings were required per plot (or plant) which were to be
averaged, and never advocated a single reading. Thus, a concern
Berger (1980) raised regarding ascribing a single category to a
sample that has, for example, severity between 37.5 and 50%
(6 on the H-B scale) is somewhat moot, as sequential samples
taken from multiple plants and averaged will almost invariably
result in a composite estimate of mean disease, and could rest
anywhere on the percent scale as deemed by the range of cate-
gory mid-point values averaged from the sample—it is unlikely
all leaves in the sample will have the same disease severity
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category (Redman et al., 1968; Bock et al., 2009c). Secondly,
Berger (1980) commented that plots with actual disease of
0.0001% or 0.01% disease would receive a rating of “2.” Al-
though a rating of “2” might be given to an individual reading,
again, Horsfall and Barratt state the need for large sample size.
Thus if severity is very low, the majority of the estimates in the
sample (leaves or plants) will likely be healthy (0%), and thus
on average the estimate of disease would be low as well. Fur-
thermore, although limits have not been tested, most raters will
probably not be able to resolve disease severity much less than
0.1% on average-size leaves, and the larger the sample the more
realistic the mean estimate of disease is likely to be (Horsfall
and Cowling, 1978), assuming there is not a further source of
error causing over or underestimation. However, it is important
to note that any error in estimates of disease can have dramatic
effects on estimates of future disease progress (Berger, 1980).

There is the issue that Horsfall and Barratt set out to ad-
dress a perceived generic source of rater error in disease assess-
ment by applying a logarithmic scale. The problem with this
“one size fits all” approach is that not all raters demonstrate
the same characteristics of error in assessing disease severity.
Some over estimate, others underestimate, and yet others might
be remarkably accurate and precise across the range of severity;
furthermore, ability changes with each assessment, and proba-
bly with the symptom characteristics of the pathosystem (Nutter
et al., 1993; Nutter and Schulz, 1995; Nita et al., 2003; Bock
et al., 2008a). With so much inter- and intrarater variation it
seems unlikely a scale adapted to a single type of error is go-
ing to be useful to all raters, particularly not to those who do
not demonstrate that error pattern. Nonetheless, based on data
where severity estimates to the nearest percent were converted
to H-B scale mid-points, the effect on the estimate of the mean
values appeared to be negligible, although the H-B scale might
result in greater variability of the mean estimate (Nita et al.,
2003; Bock et al., 2009c and d).

It is of interest to note that the logarithmic nature of the H-B
scale echoed the logarithmic nature of several other scales and
field keys being developed earlier or around that time (Rusakov,
1927; Anon., 1947; Chester, 1950; Horsfall and Cowling, 1978).
The Weber-Fechner law and logarithmic type intervals remain
the stated basis for developing many of the SADs in use to-
day (Hock et al., 1992; Godoy et al., 1997; Leite and Amorin,
2002; Gomes et al., 2004; Andrade et al., 2005; Belasque et al.,
2005; Godoy et al., 2006).Whether there is an underlying psy-
chophysical cause for the early similarity in scale structure, or
just coincidence is not known (Campbell and Madden, 1990),
but the H-B category scale, and its derivatives, are still in use.
Indeed, disciplines other than plant pathology have adopted and
use the H-B scale for estimating area (Bergh, 2001; Bussotti
et al., 2003; Copes et al., 2003; Pernezney et al., 2003).

Interval scales have some advantages. They are purportedly
quick. Applied at a field or plot level they are allegedly more
rapid than a percent estimate. They continue to have a role
in plant disease assessment and will doubtless continue to be

widely used for various applications, and as we understand how
imprecision, inaccuracy and rater error relate to the characteris-
tics of the mean estimate, perhaps scales can be constructed that
minimize inaccuracy and imprecision, and yet are sufficiently
sensitive to the range of disease severity likely to be encoun-
tered in the field, and rapid enough to apply for the task in hand.
Nita et al., (2003) showed that a category scale based on 5%
increments was more precise and accurate compared to the H-B
scale for assessment of Phomopsis on strawberry. Furthermore,
equal-sized category scales can be treated as continuous data.
The number of categories that a severity scale should have is dis-
cussed by Kranz (1970; 1988) and Hau et al., (1989) in relation
to scales with unequal-sized categories. Kranz (1970) believed
that about seven classes were optimal, and observed that the abil-
ity of inexperienced raters to categorize disease correctly was
poor based on results by Amanat (1977). Inexperienced asses-
sors were asked to rate disease and only 15.8% of the estimates
were placed in the correct category. Furthermore, the underlying
distribution of severity on infected leaves has ramifications for
the number of categories needed in a scale to accurately estimate
the mean disease severity (Hau et al., 1989).

Regarding the accuracy and precision of the estimate, the em-
pirical data suggest that category-based scales are no better than
direct estimation for assessing severity (Forbes and Korva, 1994;
Nita et al., 2003, Nutter and Esker, 2006; Bock et al., 2009c).
In situations where time is critical and it is appropriate to use a
category scale, they should be designed with particular sensitiv-
ity to disease at the low end of the severity spectrum to prevent
potential overestimation (Sherwood et al., 1983). Categories of
0.1, 0.5, 1.0 and 5.0% might fulfill this requirement. The range
of categories above this level should probably be based on a
linear scale (5% or 10%) with raters offering their best esti-
mate, preferably aided by SADs (Nita et al., 2003; Nutter and
Esker, 2006), taking a suitable sample size, so as to generate
an accurate mean (other sources of bias notwithstanding). The
maximum likely severity to be encountered should be consid-
ered (Kranz, 1977), and the scale set accordingly. Too many
divisions and the assumed advantages of speed and simplicity
offered by the scale will be lost. There remains an argument
for using scales for extensive, rapid surveys of disease sever-
ity at plot, field or regional scales, and for recording disease
in large field experiments or where large numbers of breed-
ing lines are being assessed for disease resistance. However, a
comparison of visual rating methods for time saving has yet
to be demonstrated. It is the decision of the scientist to make
an informed choice when adopting a scale to measure disease
severity, depending on the aims of the study and the desired
level of accuracy and precision.

A special type of interval scale is the field key, an exam-
ple being one used to assess late blight of potato in Great
Britain (Anon, 1947; Table 6). Field keys are a scale based
on percent severity (for example, 0.1, 1.0 2.0, 5.0%. . . 100%)
and used in conjunction with a descriptive or diagrammatic
portion of the scale that offers explanation as to the likely
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TABLE 6
A qualitative disease key used to estimate late blight of potato

in the field (after Anon, 1947).

Rating Severity characteristics

0.0 Not seen in field
0.1 Only few plants affected here and there; up to 1-2

spots in 12 yd. radius.
1.0 Up to 10 spots per plant or general light spotting.
5.0 About 50 spots per plant or up to 1 leaflet in 10.

25.0 Nearly every leaflet with lesions; plants still of
normal form; field may smell of blight but looks
green though every plant affected.

50.0 Every plant affected and about one-half of leaf area
destroyed; field looks green, flecked with brown.

75.0 About three-fourths of leaf area destroyed; field
looks neither green nor brown. In some varieties
the youngest leaves escape infection, so the green
color is more conspicuous than in varieties like
King Edward, which commonly show severe shoot
infection.

95.0 Only few green leaves remaining, but stems green.
100.0 All leaves dead; stems dead or dying.

distribution/frequency of the symptom in the field or on plants,
which contains quantitative information (Anon, 1947). The late-
blight type key was generally used on a whole field basis and
apparently received wide usage (Chester, 1950). A similar key
for apple scab based on the percent area infected (0.01–75%)
was developed by Croxhall et al. (1952a and b), who felt that
a SAD-assisted assessment of apple scab developed by Tehon
and Stout (1930) was too slow for survey work.

4. Ratio Scales
The percent scale is a ratio scale and has been widely used

to estimate disease severity in numerous pathosystems in plant
disease assessment. James (1971, 1974) outlined some of the
advantages of the continuous percent scale in assessing disease
severity to the best of the rater’s ability. He states i) that the
upper and lower limits of a percent scale are consistently de-
fined (0 and 100%), ii) the scale is universally familiar, iii) it is
easily divided and subdivided, and iv) it is widely accepted as
a way to measure area coverage. However, its effective usage
does require that raters should arrive at similar estimates of any
given actual disease, and that this estimate should be achieved
simply and quickly. James (1974) discussed some of the merits
of the percentage scale in relation to a logarithmic basis like
the H-B scale, and agrees with Chester (1950) that additional
divisions were highly desirable in the middle severity ranges as
experienced raters tended to be able to discern severity at this
level. This has subsequently been shown to be the case (Nutter
and Esker, 2006). Indeed, James (1971) goes on to comment

(although not backed by data) that with the aid of SADs raters
can do better than attempting to assess based on a log scale, the
exact ability being dependent on the individual. In addition, he
maintained that it should be used as it allows observed differ-
ences to be recorded and used that might otherwise be missed by
other rating systems. He concludes that it is always advisable
to use a scale with equal divisions like the percent scale be-
cause even in the event a logarithmic relationship is determined,
a transformation can be applied and will still be more accurate
and reliable than applying a priori equal divisions on a log scale,
a view borne out in other studies (Forbes and Korva, 1994; Nita
et al., 2003; Nutter and Esker, 2006; Bock et al., 2009b).

Various authors have investigated the accuracy and precision
of raters using the percent ratio scale and demonstrated ways in
which raters can improve the quality of their estimates, and these
are considered in the following sections. Raters vary substan-
tially in the accuracy and reliability of assessment (Nutter et al,
1993; Nita et al., 2003; Madden et al., 2007; Bock et al., 2008a,
2009b). As already noted, apart from variability in inter and in-
trarater reliability, other aspects influence the ability of the rater
including lesion number and size (the tendency to overestimate
at low disease severity, particularly acute with numerous, small
lesions), use of SADs, training and concentration (Sherwood
et al., 1983; Nutter and Schulz, 1995; Godoy et al., 2006; Bock
et al., 2008b). For example, when measuring the precision of
four raters assessing dollar spot (Sclerotinia homeocarpa) on
bentgrass, Nutter et al. (1993) showed a range in quality of
assessment, with no one rater being in perfect agreement with
the actual severity (r2 = 0.79-0.97). The inter- and intrarater
reliability was estimated and interrater reliability (r2 = 0.70-
0.89) and intrarater reliability (r2 = 0.83-0.93) were also found
to be variable (see Table 2), and as with other systems has pro-
vided base-line information on the unaided ability of assessors to
measure disease severity (Nita et al., 2003; Bock et al., 2008a,
2009a). Based on the slope and intercept, accuracy of raters
estimates compared to the actual value was similarly variable
(intercept = 1.3-19.6, slope = 0.9-1.4), with all raters show-
ing a bias or tendency to over or under estimate disease severity.
Similarly in other large scale studies with multiple raters the reli-
ability and accuracy of estimates has been variable as illustrated
by raters estimating severity of Septoria on wheat and Melamp-
sora on willow (Parker et al., 1995a), Septoria and Erysiphe on
wheat (Parker et al., 1995b), various diseases on alfalfa (Guan
and Nutter, 2003), Phomopsis on strawberry (Nita et al., 2003),
and citrus canker on grapefruit (Bock et al., 2008a, 2009a).

E. Ways to Improve Visual Estimates of Disease Severity
To identify and quantify characteristics of error, estimated

values must be compared to actual values. Once demonstrated,
ways can be developed to address the error and then subsequent
improvement can again be measured against the original data.
Thus, establishing a baseline of understanding error is impor-
tant in this whole process, not only to identify the sources, but
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also for quantifying improvement. Several studies over the last
thirty years have demonstrated the range of ability among both
experienced and inexperienced visual assessors in many differ-
ent pathosystems that exhibit a wide range of disease symptoms
(Amanat, 1976; Sherwood et al., 1983; Kranz, 1988; Weber and
Jorg, 1991; O’Brien and van Bruggen, 1992; Nutter et al., 1993;
Nita et al., 2003; Bock et al., 2008a, 2009b).

1. General Field/Lab Training
Training raters helps improve both reliability and agreement,

and traditionally this might be done with field material (Nutter
and Schultz, 1995). Disadvantages are that it is often a busy time
of the year and requires field visits to perform training. Sam-
ples kept for long lose typical traits of disease as they senesce.
Doubtless training raters in the field is of value but this has not
really been explored, probably because of the logistical issues
and the ease of training offered by SADs and computer assess-
ment programs. Although not in the field, Amanat (1976) used
images of leaves with different sized lesions and areas infected
and showed that repeated training with feedback was beneficial
to improving precision of disease estimation by multiple raters.

2. Using Standard Area Diagrams (SADs)
The original Cobb scale was the first SAD used in plant

pathology (Cobb, 1892). The rater compared samples to the five
standard disease areas illustrating rust pustules on the leaf and
placed it in the category to which it was most similar in severity.
Many researchers have since developed and applied SADs to
improve ability to assess disease on various plant organs, either
in interval scales (Tehon and Stout, 1930; Ullstrup et al., 1945;
Large and Honey, 1955; Large, 1966) or for aiding in assessment
on the percent ratio scale (James, 1971, 1974; Godoy et al., 1997,
2006; Batzer et al., 2002; Nutter et al., 2006; Pethybridge et al.,
2007).

As Large (1966) notes, SADs should be distinguishable by
the eye, and thus categories should not be too numerous. With
specified use for application with a percent ratio scale, James
et al. (1968) developed a SAD to aid assessment of Rhynchospo-
rium leaf blotch assessment in barley showing 1, 2 and 5% in-
fection and although he did not provide empirical data showing
the value of SADs, went on to produce several other SAD sets
for various disease (Figure 7) (James, 1971), with the recom-
mendation that the rater use them as a guide and endeavor to
provide a best estimate of percent area covered. At about the
same time, Dixon and Dodson (1971) also developed a set of
SADs for various diseases, although depending on the key they
suggested using an interval scale, or interpolating percent area
infected.

James (1971) believed that SADs “calibrated” a rater. Since
that time various studies have demonstrated the value of SADs.
Parker et al. (1995b) found that SADs tended to result in raters
categorizing disease around that represented by the SADs, al-
though this has not been reported in other studies (Hock et al.,
1992; Gomes et al., 1996; Godoy et al., 2004). The results from

an experiment with multiple raters assessing images of diseased
alfalfa leaves with and without the aid of SADs showed they
improved the reliability and accuracy of the raters (Nutter et al.,
1998). Belasque et al. (2005) developed a series of citrus canker
SADs representing small, medium and large lesion sizes, and
lesions with and without leaf miner damage present, and used
these scales to improve reliability and accuracy of rater esti-
mates of disease severity. Many other reports show the benefits
of SADs. Andrade et al., (2005) developed a set of standard
area diagrams to assess leaf spot (Quambalaria eucalypti) of
Eucalyptus and found improvements in the precision, accuracy
and reproducibility of disease assessments against actual val-
ues measured by image analysis. Gomes et al., (2004) devel-
oped standard area diagrams of Cercospora leaf spot of lettuce
caused by Cercospora longissima using Autocad and gave these
to assessors and found that the SADs provided improved levels
of accuracy and reliability as measured by the coefficient of
determination, slope and intercept. Hock et al. (1992) used two
different standard area diagrams for assessing small vs. large le-
sions of the tarspot disease complex on maize and Godoy et al.
(2006) developed a diagrammatic scale (Figure 8) to assess
soybean rust (Phakospora pachyrhizi) and both found overesti-
mation was common among raters, but using the scale reduced
error, and reduced error even more in those inexperienced raters.

Leite and Amorin (2002) used a diagrammatic scales set
designed on a logarithmic basis (0.03, 0.2, 0.6, 3, 7, 12, 25,
40, and 66%) to assess Alternatria leafspot (Alternaria he-
lianthii) of sunflower and they showed that use of the scale
improved both accuracy and precision. The H-B scale casts a
long shadow. SADs are often prepared based on the nonexistent
Weber-Fechner law and the logarithmic relationships implied by
Horsfall and Barratt (1945) (Godoy et al., 1997; Andrade et al.,
2005; Belasque et al., 2005). Although suspected for a long
time (Chester, 1950; James, 1971, 1974; Herbert, 1982), only
recently has data emerged that suggests the human eye can dif-
ferentiate disease in the mid range more accurately and precisely
than previously assumed (Nita et al., 2003; Nutter and Esker,
2006; Bock et al., 2009c and d). There is now at least one exam-
ple of a SAD with a stated basis of a linear scale (Pethybridge
et al., 2004). However, it might make sense to concentrate SADs
at the lower end of disease severity (<40%) as many infections
are found in this range (Kranz, 1977), but using the rationale
of the so-called Weber-Fechner law to support this no longer
makes sense (see section IV.D.3). Early SADs developed by
James (1971) did not incorporate a logarithmic component and
recent suggestions are that a linear scale, and therefore a more
linear range of SADs might be more apt for estimating disease
(Nita et al., 2003; Nutter et al., 2006), even though some raters
doubtless have a tendency to be less precise or accurate over cer-
tain disease severity ranges (Forbes and Jeger, 1987; Hau et al.,
1989; Bock et al., 2008b). Logarithmic and linear SADs have
not been compared, nor has optimum step size (perhaps every
5%), which is likely to be dependent on a number of factors
including rater ability, disease severity range and pathosystem
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VISUALLY ESTIMATED PLANT DISEASE SEVERITY 81

FIG. 7. Standard area diagrams used to estimate A. leaf rust of cereals, B. stem rust of cereals, C. Septoria glume blotch of wheat, D. late blight of potatoes
(after James, 1971).

FIG. 8. A SAD developed to aid assessment of soybean rust severity (percent of diseased leaf area indicated) using a non-linear scale having unequal intervals
(after Godoy et al., 2006).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
S
D
A
 
N
a
t
i
o
n
a
l
 
A
g
r
i
c
u
l
t
u
r
a
l
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
5
:
1
1
 
3
0
 
J
u
n
e
 
2
0
1
0



82 C. H. BOCK ET AL.

(pathogens with lots of small lesions being more difficult to
estimate precisely and accurately, Sherwood et al, 1983; Godoy
et al., 1997).

Standard area diagrams can be generated in various ways.
Computer programs can generate standard area diagrams for
disease assessments, such as SEVERITY.PRO (Nutter and
Litwiller, 1998). This allows choice of leaf and disease symp-
tom (type and lesion size). Computer generated SADs can be
used to improve estimates of disease severity (Nutter and Esker,
2001; Nutter et al., 2006). Leaf area diagrams can also be con-
structed from scanned images of diseased leaves (Pethybridge
et al., 2007).

The use of SADs does not eliminate error, and relative er-
ror still appears greatest at low levels of disease (Beresford and
Royle, 1991). In studying brown rust (Puccinia hordei) on barley
they found that despite using a set of SADs (Anon., 1976) there
was still greatest loss in relative accuracy at low severity. There
are also some disadvantages to SADs – the observer has to fit
the pattern on the actual leaf to a severity in the diagram set
where the distribution of disease is different, and there is no
feedback on the closeness of estimated to actual which is im-
portant where learning or training to assess disease.

3. Computer-based Training
Various studies have demonstrated the value of disease as-

sessment training using a computer based system, significantly
improving the accuracy and precision and intrarater reliability of
raters, but training does require significant effort – particularly
time to practice – although an advantage is it can be done in a
class room rather than in the field. The earliest assessment train-
ing program, AREAGRAM (Shane et al., 1985) was developed
to train assessors by generating SADs rather than a full range of
possible disease severities. Tomerlin and Howell, (1988) were
also pioneers with this technology for disease assessment and
developed an assessment program called DISTRAIN and We-
ber and Jorg (1991) used a program called ESTIMATE to train
raters. Newton and Hackett (1994) used DISTRAIN to train a
group of raters, and found that most raters showed a significant
improvement in accuracy and precision when rating powdery
mildew on barley. Parker et al. (1995b) also used DISTRAIN
and showed similar improvement in ability to assess powdery
mildew on barley, although they suggested that the benefits of
training were short lived and regular training was required. The
most sophisticated and widely used disease assessment train-
ing program is DISEASE.PRO (Nutter and Worawitlikit, 1989;
Nutter and Schultz, 1995; Nutter and Gaunt, 1996). The DIS-
EASE.PRO training program has been the basis for other pro-
grams, including host specific ones (ALFALFA.PRO; Nutter
and Litwiller, 1993). Results from DISEASE.PRO demonstrate
the advantage of computer-based training (Nutter and Schultz,
1995). In one study 80 raters assessed disease prior to training,
and were retested after training. Subsequent to training the co-
efficient of determination (r2) values improved for most raters
by more than 10%, accompanied by lower coefficients of vari-

ation and improved slope and intercept fits. DISEASE.PRO is
available as a training program from APS press (APS, St. Paul,
MN), and as part of an epidemiology training package (Nutter,
1997a; APS, St Paul, MN). Nutter and Litwiller (1998) subse-
quently developed SEVERITY.PRO which allows for choice of
a wider range of leaf shapes and lesion types that broadened its
applicability to a greater range of host-pathogen systems. The
system allows raters to i) set whether they want an immediate
response for actual severity, ii) choose number of leaves and
lesion characteristics (small, medium, or large, random or not),
iii) view various charts that show estimation error, regression
of estimated disease against actual disease. This allows pre and
post-test results of individual raters to be compared in various
ways to monitor ability and improvement as well as understand
generic sources of error and those unique to individual raters
(Nutter et al., 2006). In tests performed on grapevine downy
mildew with six raters, measures of accuracy (bias of the esti-
mate, described as slope and intercept) were improved in half
the test individuals, and measures of reliability were improved in
five of the six individuals (described as the coefficient of deter-
mination) by up to 10%. Using a computer-based system, digital
photographs of stem sections of rapeseed infected with phoma
stem canker (Leptosphaeria maculans) have been used to train
raters to rate diseased stems in the correct severity scale based on
percent area infected (Aubertot et al., 2006). Training improved
subsequent to rating. A further advantage of computer training
programs is that they can provide assured “actual” values against
which to estimate disease (Nutter et al., 2006). The drawback
of computer training is that the advantages might be short-lived
(Parker et al., 1995b), assessors requiring regular re-training.

4. Using Leaf Grids
Not widely used or reported on, these have been used in the

past. Parker et al. (1995b) reported using a leaf grid to assess
disease. The generic leaf grid was made up of 1% divisions.
They found that it was less good than computer training as there
was a tendency for some raters to misuse this assessment aid.
When used correctly it gave similar improvements to computer
training using DISTRAIN. Disease grids have been used to aid
assessment in the field (Lovell et al., 1997).

F. A Comparison of Visual Rating Methods for Disease
Severity Assessment

Considering how fundamental it is, there are few published
studies objectively comparing visual rating methods of disease
severity on the same plant units, and only recently have different
methods been compared. There are more studies that have
compared assessments of different parts or characteristics of
disease on the plant (Townsend and Heuberger, 1943; Shokes
et al., 1987; Lipps and Madden, 1989; Christ, 1991; Vereijssen
et al., 2003; Danielsen and Munk, 2004), which although
important, is more to do with sampling alternatives than to the
aim of this review that is concerned with comparing quality
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of severity estimation on the same plant part by individuals or
different methods.

Early on different reports commented on the value of par-
ticular scales for rating disease but did not provide data that
actually demonstrated advantage in reliability or accuracy, or in
the amount of time taken (with quantitative evidence of con-
comitant loss – or gain - in reliability or accuracy). Chester
(1950) and James (1971) make general comments on the value
of visual assessment methods, and Couture (1980) discussed the
relative merits of the percent scale and category scales and de-
scribed their advantages, although at the time no data as to their
relative reliability or agreement was available. Herbert (1982)
also raised the issue of visual assessment in relation to rationale
for the H-B scale.

By 1989 plant pathologists were actively starting to compare
methods quantitatively (Slopek, 1989). By comparing various
category scales to direct percent leaf area infected estimates, a
5-category scale was found to provide comparable accuracy to
both the direct estimates and the H-B scale mid-points. Using
three different interval scales to estimate severity of corky root
of lettuce, O’Brein and van Bruggen (1992) related estimated
severity to yield loss. The scales compared were a 7-category
scale, a 10-category scale and a 12-category H-B type scale.
Experienced and inexperienced raters used each scale and accu-
racy was determined. The 7-level scale was found to be the most
accurate and precise, but the H-B scale was best in the 20–80%
severity range, and experienced raters tended to be less biased
compared to inexperienced raters, although in these studies no
actual values were used (the actual value was based on scale
originator estimates).

A particularly important study compared direct percent esti-
mation of disease severity, and use of the H-B scale, and showed
that the H-B scale did not improve the quality of severity esti-
mation of late blight of potato and estimation by percent area
was superior (Forbes and Korva, 1994). Similarly, Nita et al.
(2003) compared direct estimation of severity of Phomopsis of
strawberry with estimates based on the H-B scale, and although
interrater reliability was generally slightly better for direct esti-
mation, accuracy was not improved by applying the H-B scale
to the severity estimates. A scale comprised of 5% categories
improved reliability and accuracy compared to the H-B scale.
In comparisons of direct estimation and the H-B scale, the H-B
scale was less reliable and precise for estimates of citrus canker,
but there was no consistent effect on accuracy (Bock et al.,
2009c). Increased replication and averaging improved the over-
all agreement with the actual data and stabilized the variance,
but the H-B scale was not superior to direct estimation. Fur-
thermore, using simulation modeling of the disease assessment
process and hypothesis testing, Bock et al. (2009d) found that
there were situations when using the H-B scale resulted in higher
probability of a type II error, compared to direct estimation to
the nearest percent.

Apart from these studies very little has been done to explore
the characteristics of different assessment methods on the same

plant units – or to quantify them relative to each other in terms
of reliability, agreement with actual values and rapidity of as-
sessment. Only when this information is available will plant
pathologists be able to base their decision of scale choice on an
objective footing.

G. A Note on the Analysis of Data From Ratio, Interval
(Category) and Ordinal Scales

Data which forms a continuous pattern and is evenly spaced
between categories might be analyzed using normal parametric
methods (e.g., ANOVA), which includes ratio scales and some
interval scales (Snedecor and Cochran, 1989; Madden et al.,
2007). The data should also be normally distributed.

To satisfy the needs of parametric statistics, many interval
and ordinal scales are first converted to a disease index, which
should provide a measure of the actual percent disease by tak-
ing into account the number of observations in each disease
category in that sample. With the logarithmic-based H-B scale,
categories are first converted back to a percentage midpoint be-
fore analysis is performed (Redman et al., 1968; Madden et al.,
2007). With other category scales there are various ways of
calculating weighted and unweighted disease indices (Chaube
and Singh, 1991), but the basic calculation prior to analysis
is performed by multiplying the number of sampling units in
each category by the category number (or mean %) for each
category, and summing the products and dividing by the total
number of samples, although the precise way in which the index
is calculated has varied and can depend on whether the scale is
arithmetic or geometric, and whether it is expressed as a per-
cent or in arbitrary numbers (Walker et al., 1938; Chester, 1950;
Croxhall et al., 1952a and b; Large, 1966; Tinline and Led-
ingham, 1979; Chaube and Singh, 1991; Tinline et al., 1994;
Bruton et al., 2000; Harveson and Rush, 2002). For example,
Tinline et al. (1994) developed a scale to ascribe disease sever-
ity on wheat and barley. Plants were assigned a severity rating
from a 4-category scale where 0 = healthy, 1-25% = slight,
26-50% moderate and >50% severe, with values of 0, 1, 2
and 5 being applied to wheat and 0, 2, 5 and 10 being as-
signed barley for the four categories prior to the percent disease
ratings being calculated through a disease severity index, and
an ANOVA performed on the resulting data. Non parametric
methods can always be used for both ordinal and interval-based
data, if necessary (Shah and Madden, 2004; Madden et al.,
2007).

H. The Future of Visual Rating Methods
Visual rating methods are, and will continue to be the single

most important way of assessing plant disease for the foresee-
able future. Other technologies being developed will no doubt
continue to make a greater contribution. Thus, the need to elu-
cidate the best ways to assess disease severity, identify and
gauge the magnitude of error in estimates, and reduce that
error is highly desirable. The reliability and agreement that
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is required for the disease assessment task at hand should be
considered when choosing an assessment system (surveys, rat-
ing germplasm, predicting disease progress, etc.). Wherever
possible studies should adopt methods that maximize both rater
reliability and agreement with the actual value.

V. DIGITAL IMAGERY AND IMAGE ANALYSIS IN THE
VISIBLE SPECTRUM

Digital cameras are an inexpensive and widely used resource,
and used for various applications in plant pathology. Photog-
raphy (digital, and previously film) has been used to detect,
quantify and study diseases and pathogens for many decades.
Aerial film-photography of diseases fields started in the 1920s
(Neblette, 1927) and has continued to be used and developed
in plant disease detection and quantification (Colwell, 1956;
Brenchley, 1964; Manzer and Cooper, 1967; Bauer et al., 1971;
Wallen and Jackson, 1971; Schneider and Safir, 1975; Toler
et al., 1981; Johnson et al., 2003; Jones et al., 2006). At the
microscopic scale digital image analysis has also been used in
plant pathology to measure and observe pathogen and host phys-
iology and development (Smith and Dickson, 1991; Hilber and
Schuepp, 1992; Dieguez-Uribeondo et al., 2003; Seiffert and
Schweizer, 2005) and pathogen dispersal (Fitt et al., 1982).

It is in the mid range of plant disease severity estimation that
that pertains specifically to measurement of symptoms on indi-
vidual plant organs, plants and quadrats which is in concert with
the resolution of most digital cameras at the sub-plot level. Early
work was performed with video cameras sensitive to the visual
spectrum or using digitized images of film (Nilsson, 1995), but
as the technology progressed, and digital cameras became avail-
able and less expensive, from the late 90s onwards, most studies
have used these.

A. Digital Cameras and Other Image-Acquiring Devices
Imaging devices include traditional film cameras, slide scan-

ners, flat-bed scanners, video cameras and digital cameras. Dig-
ital cameras have fast become the primary device for imaging
samples. There is a tremendous range of capability, and it would
be unrealistic to attempt a breakdown of their pros and cons. This
section will provide only a brief overview of digital imagery in
relation to image acquisition. The popular photographic press
runs numerous reviews of currently available digital cameras
cataloguing their capabilities and a fairly recent review on digi-
tal imagery and image acquisition based on digital cameras was
published in Plant Disease (Ricker, 2004), and describes some
aspects of this technology relevant to plant pathologists. Dig-
ital images can also be obtained from a flat bed scanner used
to digitize old photographic prints and negatives, or even plant
leaves directly, and slides can be scanned and digitized by film
scanners. Once obtained, there is a flow of information from
the choice of the sample unit to record to the measurement of
diseased area in the imaging process (Price and Osborne, 1990;
Nilsson, 1995).

B. Image Acquisition
Digital cameras consists of a lens, a viewfinder (and/or an

LCD display), and a light sensitive screen on which the light
from the image falls. First considering monochromatic digital
cameras (sensing only one color), the screen, comprised of an
array of photosensors, measures the intensity of the incoming
light. There are two common screen types. The CCD (charge-
coupled device) screen which is an array of semi-conductor
photosensors and the CMOS (complementary metal oxide semi-
conductor) screens which are more energy efficient and cheaper
to manufacture, as well as acquiring the image data in parallel,
which is faster. The photosensors are memory cells and convert
the incoming light into electrons – an electric charge - the accu-
mulated charge is released and is proportional to the intensity of
the light. The contents of the photosensors on the CCD screen
are then converted from an analogue to a binary digital signal
(1, 0) by a frame grabber (an analogue-to-digital converter), and
transmitted to the computer where they are drawn on the screen
based on the 1 and 0 readings (Ricker, 2004). CMOS screens
are designed so they produce a digital output and do not need
to be converted. Thus, each photosensor is represented on the
computer monitor by a pixel, with brightness and location iden-
tified through image processing. Color digital camera images
are acquired by incorporating sensors for each of the primary
colors red, green and blue in the screen. The photosensors can
be co-arranged in different ways, from a regular mosaic to a
layered arrangement. Each photosensors records only a single
color and the actual color for the image for an individual pixel
is obtained by an interpolation algorithm that compares it with
the surrounding pixel color measurements thereby generating
an estimate of color. The algorithm uses the RGB color model
to accurately portray the original color (Cope, 2002).

C. Image Resolution and Subject Orientation
It is useful to understand the factors that influence digital

image quality, and how these influence disease severity
measurement during image analysis. These include focus,
reflection (glare) of light on the object, uniformity of lighting
prior to image acquisition (Blasquez and Edwards, 1985; Price
and Osborne, 1990; Price et al., 1993; Tucker and Chakraborty,
1997; Steddom et al., 2005a), and resolution and compression
of the image file subsequent to its acquisition and storage
(Steddom et al., 2005b). Various studies have stressed possible
problems caused by reflection (Price et al., 1993; Steddom
et al., 2005a) and the need to keep the image in uniform focus
and sharp, avoiding variation in lighting or coloring that might
be picked up by the imaging software and could result in
error differentiating healthy and diseased areas (which can be
particularly problematic where automation of the process is
desired). Kampmann and Hansen (1994) found leaf veins and
reflections on cucumber leaves degraded the accuracy of color
image analysis. Martin and Rybicki (1998) also found this
with leaves of maize. Reflection leads to low saturation, and
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FIG. 9. Image size was dramatically reduced by using JPEG compression or
reducing image size. The greatest difference was seen between TIFF images
and JPEG images at the highest resolutions (after Steddom et al., 2005b).

shadowing leads to low intensity, which might interfere with the
process of segmentation (separation of areas of interest based
on chosen criteria, for example, color or intensity). However, in
a study of wheat plots infected with rust and imaged overhead,
to minimize glare and shadow, and at an oblique angle, to
maximize glare and shadow, removal of pixels representing
glare resulted in a reduced correlation (8%) compared to esti-
mates of severity by raters (Steddom et al., 2005a). So although
reflection and shadow can influence the result, it may cause
greater error when these pixels are removed from the image.

The number of bits also influences the image quality. The bit
depth is the grayscale or number of values from white to black.
Thus each bit can be 1 or 0, white or black respectively, so a
two-bit system has four values, black, white and two shades of
gray: 00 01 10 11, and so on. The number of possible categories
in a gray scale is 2a where a is the number of bits (Ricker, 2004).
The human eye is thought to be able to differentiate 10 million
colors (Judd and Wyszecki, 1975), and most digital cameras are
8-bit per color (28+8+8) or 16.8 million colors.

The resolution and size of the image affects storage space
for the data. Images are inherently large files (TIFF, BMP, JPG
etc.), and there is little point in having an image that is larger
than required to provide a good quality measurement (Steddom
et al., 2005b). Thus image resolution can be reduced, or files
compressed, which saves space (Figure 9), but can influence
the image quality. The resolution of a digital camera (or other
digital imaging devices or printers) is defined by the numbers
of photosensor (equals pixel) rows and columns on the CCD
screen, summarized as megapixels for digital cameras, thus a
camera with a 1600 x 1200 photosensors screen is described as
a 2-megapixel camera (Ricker, 2004), and a camera with 4064 x
2704 photosensors is an 11.1 megapixel camera, which is con-
sidered a pretty good resolution at the time of writing. Cameras
with over 16 million pixels are available, and for comparison,
there are estimates that a good 35mm film image has a resolution
of about 20 million pixels (Anon., 2004).

There are ways of reducing file size without impairing the
ability to perform digital analysis, and this can be achieved by
file compression and reducing resolution (Ricker, 2004). Thus
size of an image file is related to resolution and bit depth and
doubling the resolution quadruples the file size (for an 8-bit
digital camera):

Number of bytes = (total pixels × bits per pixel)/8 bits/byte

Compression of digital files can be in a “lossey” format or
a “lossless” format. The “lossless” (for example, a TIFF im-
age – tagged image file format) preserves all information in the
original image and compression is completely reversible, while
the “lossey” discards information, for example a JPEG (Joint
Photographers Expert Group). JPEGs can be saved at various
compression levels, the greater the compression, the poorer the
image quality, and the process is irreversible (see Figure 9).
Basically, compression involves blocking 8x8 groups of pixels
which at high compression leads to a blocky image. Various
artifacts can develop in the image analysis procedure as a result
(Steddom et al., 2005b). For plant disease severity measure-
ment using image analysis, various image formats, resolutions
and compressions including TIFF, and JPEG (high, medium-
high, medium, and low) have been compared (Steddom et al.,
2005b). Measuring the severity of rust and tan-spot of wheat
TIFF images were saved at a resolution of 8.4 million pixels
and reduced progressively to 858 pixels per image. The TIFF
images were converted to JPEGs with compression of 100, 75,
50, and 25 percent. The disease severity (percent necrotic leaf
area) was measured for each image, and correlated with the per-
centage of necrotic leaf area of the original 8.4 million pixel
TIFF images. Image format had little effect, and image resolu-
tion had to drop below the point it was difficult to discern lesions
by eye (21,000 pixels per image) for resolution to become an is-
sue (Steddom et al., 2005b, Figure 10), although with resetting,
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FIG. 10. Correlations between images with reduced resolution and reduced
image quality against the original 8.4 million pixel images (after Steddom et al.,
2005b).
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the image analysis could still perform well. Thus fairly low-
resolution digital cameras and high JPEG compression levels
are acceptable for plant disease measurement using image anal-
ysis. Once acquired, compressed and stored, further processing
might be required.

The orientation of a subject can influence the measurement,
so it is important that the image provides the cleanest view
possible of the area of interest. Kokko et al. (1993) studied dis-
ease severity on subcrown internodes of wheat infected with
Cochliobolous sativus. A 4-category visual scale showed that
digital gray scale image analysis of wheat was relatively reli-
able (r = 0.99), but they found a significant effect of orienta-
tion on the severity measurement. Mean intensity was variable
due to uneven distribution of disease around the stem section.
They stressed the need for standardization to achieve repeatable
results; including lighting, orientation, and three-dimensional
shape and using as broad a range of gray scale as possible to
help with differentiation of symptoms.

D. Image Processing
Once the image has been obtained, it can be edited in various

ways in many different image analysis and image processing
software packages. Color and contrast can be corrected, images
rotated sharpened inverted or further manipulated. Programs
such as Adobe Photoshop (Adobe Systems Inc., San Jose, CA)

are powerful software package that offer many options for en-
hancing images. Most image analysis programs also offer im-
age editing and modification including enhancing edges and
geometric corrections.

E. Image Analysis Software and Image Measurement
Many different proprietary and custom image analysis soft-

ware programs have been used in plant disease severity assess-
ment. Some examples are shown in Table 7. Before exploring
the application of these it is worth going through the image
analysis protocol, which has many common processes regard-
less of the software program being used. Firstly, with color
images the image is composed of three colors and each pixel
in the image has a particular value for each of the primary col-
ors red, green and blue based on the RGB color model, which
is a three-dimensional color space used to generate the correct
color (Figure 11A) in the color of the perceived image (Russ,
2002). The pixel color is described by hue, saturation and inten-
sity (HSI, Figure 11B). The hue is the pure color of the pixel,
while the saturation of a pixel is the amount of color (pure hue,
to white, which contains a wider range), and the intensity of
the pixel which relates to its brightness (from the pure hue to
completely black). An image of a citrus leaf infected with cit-
rus canker is shown to demonstrate the RGB components of the
original image (Figure 12). However, the HSI characteristics are

TABLE 7
Various image analysis software used in various studies to measure disease severity on leaves, plants and small plots.

Software source Name References

Commercially
available

ASSESS, APS Press, St Paul, MN Tjosvold and Chambers, 2006; Donzelli and
Churchill, 2007; Jackson et al., 2007; Vicent et al.,
2007; Bock et al., 2008a and b; Grunwald et al.,
2008; Bock et al., 2009a and b

Image Pro Software (Media Cybernetics, Silver
Springs, MD)

Mian et al., 1998; Diaz-Lago et al., 2003

JLGenias (JL Automation, Sunderland, UK) Martin and Rybicki (1998)
SigmaScan (Jandel Scientific Software, San

Rafael, CA )
Niemera et al., 1999; Olmstead et al., 2001

Sigma Scan Pro software (SPSS Inc, Chicago) Biernacki and Bruton, 2001
Skye-Probetech, Venette and Venette, 1991
Soft Imaging Systems GmBH, Boso et al., 2004

Custom software Microsoft C compiler (Microsoft Corporation,
Redmond, WA) and Matrox color board and
color (Matrox Electronic systems, Ltd, Dorval,
Quebec)

Ahmad et al., 1999

Image09 (on line, University of Cape Town, South
Africa)

Martin and Rybicki (1998)

Visual C++. Tucker and Chakraborty (1997)
Using BASIC with a DS-65 digitiser (Micro

Works, Del Mar, CA).
Lindow and Webb (1983)

QUANT, Vale et al., (2003). Andrade et al. (2005).
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FIG. 11. The basis of the image models and the characteristics of the images
that are used in image analysis procedures. A. The RGB model can be considered
a cube, with colors being defined by the coordinates of the RGB triplet in 3D
space. B. The HSI color model is a mathematical transformation of the RGB
cube, with intensity on the vertical axis of the cone (equivalent to the black
to white diagonal in the RGB cube), saturation is the radius of the cone, and
hue is the angle around the intensity axis. The hue is the pure color; increasing
saturation makes color more vivid and increasing intensity makes the color
brighter without changing the color or saturation. Hue and saturation are the
two most commonly used criteria for separating leaves and diseased areas in
analysis of color images (after Lamari, 2002).

most often used to separate the objects of interest in the image
(Figure 13). The action of separating areas of interest based on
these criteria is called segmentation (in color images pixels are
selected that match specific criteria based on hue or saturation,
rarely intensity). Once the background has been removed from
a leaf, the hue has been found to be the most effective charac-
teristic for delineating healthy from diseased areas with color
images, while the intensity plane must be used for black and
white images (Lamari, 2002; Steddom et al., 2005b).

A popular and readily available image analysis software for
plant pathologists is ASSESS c© (ASSESS c©: Image Analysis
Software for Plant Disease Quantification, APS Press, St. Paul,
MN, Lamari, 2002). For thresholding, a histogram reveals the
distribution of color in the pixels within the selected area of
the image and allows choice of the correct settings to threshold

healthy leaf and lesion areas of the image. The “thumbnails”
(the program controls which determine the color range to be
selected) are adjusted until the best fit of the chlorosis/necrosis
is selected. Once the thresholds are set, the program calcu-
lates the area in pixels (Figure 14). In ASSESS c©, a percent
area function can be applied and the color images measured
for area of leaf and area showing symptoms. The thumbnail
settings for the leaf and lesion are retained by ASSESS c©, pro-
viding a guideline for the subsequent image measurements. The
process of pixel thresholding is applied in most image anal-
ysis systems that are used to measure plant disease severity
(Blanchette, 1982; Lindow and Webb, 1983; Newton, 1989;
Price et al., 1993; Kampmann and Hansen, 1994). Inevitably
setting the thresholds requires some subjectivity and will vary
among operators, although this source of error has not been
explored in image analysis. When measuring “actual” values,
some image enhancement might be necessary to optimize mea-
surements because of inconsistency in lighting amongst images,
slight differences in the color of healthy leaf tissue, and varia-
tion in necrosis color (Bock et al., 2008a, 2009b). As with most
image analysis software programs, ASSESS c© has various fil-
ters, contrast and color saturation functions, as well as color
balancers which can be applied to consistently enhance the area
of interest to maintain measurement accuracy for recording ac-
tual values. Automation can be achieved by choosing specific
threshold settings for images and then running using a macro,
but automation can result in error when based on a single im-
age’s specific threshold values (although image preprocessing
can improve the analysis, Bock et al., 2009a). A recently devel-
oped version of ASSESS c© (ASSESS c© V2.0) that incorporates
an automatic threshold feature (each image is treated separately,
no common threshold) by applying an automatic algorithm to
recalibrate thresholds for each image has been released (2008).
There are no published data on automated disease measurement
using this system yet available.

An algorithm to automatically set the threshold on succes-
sive images has previously been incorporated into other software
systems. Lindow (1983) and Lindow and Webb (1983) quanti-
fied severity of Alternaria solani on tomato and Aschochyta
pteridium on bracken using black and white digitized images
using a 64 gray scale. Algorithms corrected for variation in the
background from image to image and subsequent automated
measurements of 10 to 20 individual leaves of each species
with 0-100% necrosis showed intra-method reliability of +/-
0.8%, and it provided for rapid processing, requiring just 4.1
sec/image. By incorporating this type of self correcting system
sensitive to the variation in the background, they were able to
achieve a high level of reproducibility at relatively low cost.
Other image analysis systems have used algorithms and a step-
wedge or photographic gray scale standard for calibration (Mar-
tin and Rybicki, 1998). A gray scale image analysis system that
automatically assessed leaf area infected gave reliable results,
in agreement with actual values – and was more precise and
less biased than estimates by raters (Table 8). The reference
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88 C. H. BOCK ET AL.

FIG. 12. Sensors in most digital cameras record images in three colors, red green and blue, and thus each image is a composite of the combinations of color in
the 3D color space. Thus an original image (A) is comprised of a red component (B), a green component (C) and a blue component (D), the relative proportions
of which result in the actual color of the image. The color, along with the hue, saturation and intensity are useful characteristics for delineating objects of interest
in an image.

FIG. 13. The original image of a grapefruit leaf with symptoms of citrus canker (A), and an image showing each of the hue (B), saturation (C) and intensity
planes (D) that are used to separate areas of interest in images of leaves or plants.
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VISUALLY ESTIMATED PLANT DISEASE SEVERITY 89

FIG. 14. The original image and detail of a canker infected grapefruit leaf
(A) showing the process of image outlining in detail (B) and area demarcation
of the symptoms (C, D) in ASSESS c© (Lamari, 2002).

TABLE 8
Determination of the accuracy of disease assessment

techniques (image analysis and visual assessment1) based on
linear regression analysis of chlorotic area estimates of the area
of maize leaves showing symptoms of maize streak virus. The
estimates of disease were plotted against actual chlorotic areas

(after Martin and Rybicki, 1998).

Regression parameters2

Analysis technique Scorer r2 Slope y-intercept

Commercial image
analysis system

Manual 0.973 1.040 −0.877

Automatic 0.976 1.045 0.346
Custom image

analysis system
Scorer 1 0.985 1.013 0.275
Scorer 2 0.971 1.032 −0.782
Scorer 3 0.980 1.020 −0.190
Scorer 4 0.979 0.999 0.610

Visual assessment Scorer 1 0.913 1.066∗3 12.958∗4

Scorer 2 0.960 1.245∗ 1.064
Scorer 3 0.957 1.135∗ 5.201∗

Scorer 4 0.927 1.029 8.385∗

1Two image analysis systems, a commercially available system op-
erated both manually and automatically, and a custom made system
operated by each of the raters were compared to visual assessment of
the leaf images for accuracy.

2Linear regression analysis (y = a +bx) was used to compare es-
timates to the actual values. The coefficient of determination, (r2)
indicates the precision of the estimates, and the slope and y-intercept
indicate the bias.

3Slope values that are significantly different from 1 (P ≤ 0.01) are
followed by∗.

4y-Intercept values that are significantly different from 0 (P ≤ 0.01)
are followed by∗.

step-wedge function allowed full automation and a custom sys-
tem took 36.2 sec per image compared to 10.1 sec per leaf for
a commercial one. Subsequent application of the custom sys-
tem showed that it was better able to discern resistance to maize
streak virus in maize compared to visual estimates (Martin et al.,
1999).

F. The History and Application of Image Analysis in
Plant Disease Measurement

There have been several reviews that have included consid-
eration of images from digital cameras in agriculture and other
plant sciences (Nutter, 1990; Price and Osborne, 1990; Nilsson,
1995), but none that have considered it solely in the context
of disease severity measurement. In the early days of photog-
raphy and image analysis of plant disease, most of the images
were acquired from a substantial distance, generally with the
use of camera systems mounted in aircraft (Taubenhaus et al.,
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1929; Brenchley, 1964; Jackson and Wallen, 1975; Toler et al.,
1981). The use of videography and image digitization as a tool
to measure disease severity at the scale of a leaf did not really
receive attention until the 1970s and 80s. The advent of desk
top computers and relatively inexpensive video and digital cam-
eras and the availability of image analysis software programs
resulted in greater interest and application of image analysis for
measuring disease severity on individual plants, roots, leaves
or fruit, or small areas (quadrats). There are now many studies
where image analysis of plant leaves, roots stems or fruit has
been used, and/or compared with visual rating, although not
all have described an “actual” value for agreement comparison
which inevitably precludes comment on their accuracy. Thus
some caution is needed when image analysis results are com-
pared only to those of a visual rater, whose assessment might be
biased to an unknown degree.

1. General Studies on the Application of Image Analysis
Nilsson (1980, 1995) was an early pioneer in the applica-

tion of remote sensing and image analysis in plant pathology,
and considered the applicability of image processing for disease
assessment. He described using a Leitz Texture Analyzing Sys-
tem (Ernst Leitz-Westar GmbH, Wetzlar, Germany) to measure
disease severity, and concluded that image analysis had great
potential in plant pathological research. Another early applica-
tion was that by Blanchette (1982), who used a VP-8 image
analyzer system to demonstrate the potential of the technology
to measure the severity of wood decay in pine. Image analy-
sis readily differentiated healthy from decayed wood using an
eight gray-scale system, providing good correlation (r > 0.91)
with actual areas measured from tracings. A pioneering study
that demonstrated the capacity of image analysis to measure
disease severity on complex leaves with good intra-method re-
liability and agreement was that of Lindow and Webb (1983)
and Lindow (1983). Other early investigative studies of image
analysis included that of Bronson and Klittich (1984) who de-
veloped PHYTOSCAN 83. Blasquez and Edwards (1985) used
transparencies digitized by recording on a monochrome video
camera and compared development of severity of late blight
on tomato using image analysis and an arbitrary visual rating
scale. Reliability compared to raters was found to be good. Sev-
eral studies subsequently demonstrated either black and white
or color image analysis to be superior to visual rating in various
different pathosystems (Kokko et al., 1993; Price et al., 1993;
Kampmann and Hansen, 1994). Price et al. (1993) compared
actual values to color and monochrome digital image analysis
and visual assessments of severity of coffee leaf rust (Hamileia
vastatrix) on coffee and found color image analysis was more
accurate than visual assessment or black and white image analy-
sis. Garling et al (1999) compared image analysis, multispectral
radiometry, grids and visual assessment for measuring dollar
spot (S. homeocarpa) on turf grass. All four methods were
significantly different from each other – with image analysis
apparently providing the most accurate measurements. Bock

et al., (2008a and 2009b) used image analysis to measure ac-
tual disease severity on a leaf-by-leaf basis and found image
analysis was more reliable when repeated compared to visual
raters. These data were used to investigate various sources of
error in visual assessment of citrus canker (Bock et al., 2008b)
and a system was developed to automate measurement of citrus
canker severity (Bock et al., 2009a) using ASSESS c© (Lamari,
2002). Agreement of the automated system to actual values was
similar to visual raters, but took longer per image.

However, not all studies on the application of image analysis
have found it produces results in close agreement to actual val-
ues or rater estimates. Nutter et al. (1993) reported poor agree-
ment between image analysis and actual values. Tucker and
Chakraborty (1997) used image analysis to count lesion num-
ber and measure severity of leaf blight (Alternaria helianthi) of
sunflower (Helianthus annuus) and oat leaf rust (Puccinia coro-
nata f.sp. avenae) on oats (Avena sativa). Although there was
good agreement between actual disease measured by a planime-
ter and lesion numbers from image analysis, raters consistently
provided a better estimate of leaf area infected and lesion num-
ber for both diseases when compared to image analysis. Olm-
stead et al., (2001) found that image analysis of powdery mildew
(Podosphaera clandestine) on sweet cherry was inferior to rater
estimates when compared to actual values. Despite these stud-
ies, the vast majority of recent work suggests that image analysis
most often provides a more accurate and precise, but generally
more time-consuming way of rating disease. Image analysis has
now been widely tested and explored as a tool in plant pathol-
ogy, and also for applicability in sectors within the discipline
having various research goals.

2. Specific Applications of Image Analysis in the Visible Spec-
trum for Disease Severity Assessment.

a. Quantifying host resistance. There have been several
studies testing the application of image analysis to measure dis-
ease severity in disease resistance studies. Among the first study
to investigate its application at discerning germplasm resistance
was that of Newton (1989), who used image analysis to measure
the sporulating area of powdery mildew (Erisyphe graminis) on
barley leaves of various cultivars and found good correlation
with most components of partial resistance, but image analy-
sis was unable to discern a reduced colony size component,
which visual raters could do. In contrast, Todd and Kommen-
dahl (1994) found image analysis more discerning than raters
at differentiating germplasm reaction of corn to Fusarium spp.
causing stalk rot, and for differentiating among Fusarium spp.,
although no actual values were used in the study. Image anal-
ysis was as good as, and complimentary to visual assessment
comparing resistance of potatoes to late blight based on internal
images of symptoms in the tuber (Niemira et al., 1999). One
study in particular that produced results in close agreement with
actual values was used to measure host reaction to maize streak
virus (MSV) in differentially resistant corn genotypes (Martin
and Rybicki, 1998; Martin et al., 1999). Using a grayscale image
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analysis system they automatically assessed leaf area infected
and were able to differentiate degrees of resistance to MSV
that were not distinguishable using other methods of assess-
ment (it also allowed identification of virulence types of MSV
on the differential series). The custom system was developed to
fully automate image analysis that could set threshold cut-off
values and measure area infected without operator input (Mar-
tin and Rybicki, 1998), which is analogous to that developed
by Lindow and Webb (1983). Kokko et al. (2000) used image
analysis to measure total area and mean intensity of common
root rot (Cochliobolus sativus) of barley and demonstrated the
image analysis was sensitive to cultivar differences, the relation-
ships between disease intensity, root area and root weight, and
was more objective and reliable than visual assessment based
on a scale. Using color images of oat leaves infected with oat
crown rust (Puccinia coronata), Diaz-Lago et al. (2003) dif-
ferentiated leaf areas using segmentation based on color (green
= healthy, orange-red-brown = sporulating, dark-brown-black
= telia, and white = reflection) and assessed uredinium den-
sity, uredinium size, relative infection frequency, latent period,
days to first pustule appearance and disease progress rates based
on images acquired every 1–2 days. Image analysis measure-
ments were effective at differentiating the components of par-
tial resistance. Resistance of clones of grape (Vitis vinifera)
to downy mildew (Plasmopara viticola) was compared using
image analysis of foliar symptoms (Boso et al., 2004), with
differences in the leaf area infected identified among cultivars.
Evans and Pope (2006) used image analysis to compare dis-
ease severity on leaves of two wheat cultivars inoculated with
Fusarium graminearum – analysis of the results showed differ-
ences in measured severity between the two varieties. Using a
slightly different method (whole pot digital image analysis) sev-
eral lines of tall fescue (Festuca arundinacea) germplasm were
successfully screened for resistance to Rhizoctonia spp (Sykes
et al., 2008).

In contrast to some of the resistance screening studies where
image analysis has proven discerning, Olmstead et al., (2001)
found that image analysis of powdery mildew (P. clandestine)
infection on sweet cherry leaves was inferior to visual assess-
ments when compared to the actual values. They concluded
that visual assessments were adequate for assessing powdery
mildew severity on cherry. Furthermore, digital image analysis
was inferior to real-time PCR measurement of fDNA to measure
oat genotype resistance to P. coronata (pathogen severity),and
both image analysis and visual assessment failed to identify
some measures of resistance identified by fDNA quantification
(Jackson et al., 2006) showing that although disease symptoms
are informative, in some cases quantification of the pathogen is
more powerful. Thus image analysis has proven to be a useful
addition to the range of tools available for plant disease mea-
surement in plant breeding, although it has yet to realize its full
potential.

b. Pathogen population biology. Image analysis has been
used to study pathogen population biology and virulence, which

inevitably has some overlap with studies in plant breeding.
Based on image analysis of disease severity on leaves of wheat
infected with isolates of Pyrenophora tritici-repentis from dif-
ferent geographic locations, Sah and Fehrmann (1992) were
able to discern differences in isolate and cultivar interactions
among assessment data, and the lack of geographic association
of isolates confirmed no geographic pools of virulence. Black
sigatoka (Mycosphaerella fijiensis) is a very damaging disease
on banana (Musa spp). Donzelli and Churchill (2007) measured
severity of black sigatoka caused by different isolates and were
able to demonstrate differences in virulence or “aggressiveness”
based on image analysis results, and also discerned effects of
different inoculation methods.

c. Pathogen effects on different host species. The effect
of pathogens on various host species has been investigated with
image analysis. The severity of infection can be used to com-
pare the impact of different pathogens on particular host plants.
Biernacki and Bruton (2001) used image analysis to compare
the impact of three different root pathogens (Monosporascus
connonballus, Acremonium cucurbitacearum and Rhizopycnis
vagum) on various root dimensions of muskmelon (Cucumis
melo var cantalupensis) and demonstrated image analysis was
a useful way to provide quantitative assessments of plant injury
of these root-rot pathogens. In an unrelated study, using im-
age analysis host differences were explored by Grunwald et al
(2008). Species of Viburnum differed in symptom severity and
thus susceptibility to sudden oak death (Phytopthora ramorum).

d. Relating disease severity to yield loss and fungicide ef-
ficacy. One of the major outcomes of any disease assessment
activity is to relate the damage to yield loss – or disease control
to improved yield. Few studies have actually used image analy-
sis results in relation to yield loss. Shaw and Royal (1989) used
image analysis to accurately measure the area (actual values)
of wheat leaves infected by S. tritici to understand the sources
of error in individual rater estimates (by regression of estimates
of individuals against actual severity, individual error functions
were developed). On this basis they were able to estimate and
validate a function describing the rate at which Mycosphaerella
graminicola caused yield loss in winter wheat, and demonstrate
yield was best predicted by the integral of the square root of
M. graminicola severity on the flag leaf alone. Although this
demonstrated a way of possibly obtaining better estimates of
disease, the intrarater reliability of individuals makes any func-
tion developed from one assessment questionable relative to
further assessments – i.e., the function is really only good for
the assessment on which it is based.

In measuring disease control treatments, image analysis has
been used to gauge the efficacy of fungicides. For example,
Vicent et al. (2007) used image analysis to assess the percent
leaf area diseased on mandarins (Citrus reticulata) caused by
brown spot of citrus (Alternaria alternata) and based on the
image measurements they were able to show clear differences
in rain fastness and persistence among various fungicides used
in the study. In an earlier study, image analysis was a tool used
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92 C. H. BOCK ET AL.

to help estimate sample size in a fungicide experiment (Sted-
dom et al., 2005b). The optimum numbers of leaves to sam-
ple was calculated based on a preesample of ten wheat leaves
from each plot where strobilurin fungicide was being tested
against rust. These data were used to demonstrate that opti-
mal sample size was affected by fungicide treatment – some
treatments had more variable ranges of disease severity, requir-
ing a larger sample to ensure an equally good estimate of the
mean.

e. As a tool in developing assessment aids. Image analy-
sis has been used to develop assessment aids for plant disease
assessment, particularly SADs, the advantages of which have
already been discussed in a previous section. Once developed,
they can be used to aid visual estimation of disease severity in
the field. Bacchi et al. (1992) used color digitization of video
images of infected bean leaves to prepare a photographic scale
for the assessment of Uromyces appendiculatus on bean, and
Pfender (2004) used image analysis to develop a SAD set to aid
estimating leaf area infected with stem rust (Puccinia graminis
subsp. graminicola) on perennial rye grass (Lolium perenne).
Pethybridge et al. (2004) developed a series of SADs for ray
blight disease (Phoma liguilicola) on pyrethrum (Tanacetum
cinerariaefolium) in Australia, and based these on image anal-
ysis of scanned leaves which were then used to aid estimate of
the disease in the field and compare various disease measure-
ments for relationships to disease control and subsequent yield
(Pethybridge et al., 2007). Belasque et al. (2005) used image
analysis to measure the actual range of severity of citrus canker
on citrus leaves and used the results to provide the limits for
a series of SADs representing small, medium and large lesion
sizes, and lesions associated with leaf miner damage. These
were used to demonstrate rater error before and after training
which resulted in improved agreement by raters. Similarly, An-
drade et al., (2005) developed a set of standard area diagrams to
assess leaf spot (Q. eucalypti) of Eucalyptus and found improve-
ments in agreement of disease assessments against actual values
measured by image analysis. Based on a 6-point severity rating
scale, an image based system was also developed to train raters
for assessment of phoma stem canker on oilseed rape (Aubertot
et al., 2006), with subsequent improvement in classification of
diseased stem sections.

f. To compare components of disease. Various compo-
nents and measures of plant disease severity have been investi-
gated with the aid of image analysis. In 1975, Eyal and Brown
described using image analysis to measure the density of Sep-
toria tritici pycnidia on wheat leaves and were able to describe
the relationship between pycnidial number, mean area and per-
cent coverage – and demonstrated that as density of pycnidia
increased, size decreased. More recently Tjosvold and Cham-
bers (2006) were able to demonstrate using image analysis on
leaves of camellia and rhododendron infected with P. ramorum
that leaf area diseased was highly correlated with lesion num-
ber, thus demonstrating the association of the two measures of
disease. On the other hand, Bock et al. (2008a and 2009b) found

that with the citrus canker pathosystem there was a generally
poor relationship between the percent area infected and lesion
numbers. Different pathosystems are likely to vary, and image
analysis can provide a useful way with which to measure vari-
ous symptom components (pycnidia, lesion number, chlorosis,
necrosis, etc.) objectively.

g. Measuring disease on fruit and seed. Image analysis
has also been used to measure disease on fruit and seed. Corkidi
et al. (2006) measured the severity of mango anthracnose (Col-
letotrichum gloeosporoides) on mango. A three-dimensional
image analysis system was developed to assess the whole fruit
surface and good reliability was found when compared to ac-
tual severity. Although generally seed infection is an incidence
measure, the potential application to measure severity on seed
also makes this worthy of mention. Image processing has been
used to classify seed as healthy, diseased, or immature. This was
achieved based on a color analysis of symptoms incorporating a
model comprising six color features and provided 88% accuracy
overall (Ahmad et al., 1999).

An apparently unexplored aspect of image analysis is ap-
plication to differentiate multiple disease symptoms, which is
probably due to the fact that image analysis does not offer an
easy way of discerning actual symptoms (necrosis or chlorosis
caused by different pathogens). Although in the crop or field we
might be interested in a single disease causing an epidemic, there
are occasions when other symptoms will be evident (or physi-
ological disorders or pest injury). Image analysis in the visible
spectrum has not been tested with regard to its resolving power
for multiple diseases, but it is likely not to be good. Trained
visual raters probably provide the most discerning approach to
assessing multiple diseases.

G. The Future of Image Analysis Methods for Disease
Measurement

Image analysis has become increasingly widely used as a
research tool for measuring severity on plants or plant organs
over the last three decades. As the technology improves and the
software becomes more flexible and better capable of differen-
tiating disease and coping with variation among samples there
is likely to be a continued increase in its application and use.
The lure of speed and automation in assessment, non-destructive
sampling and a permanent record are appealing. The reliability
and accuracy potentially offered by image analysis will ensure
its continued use and an expanding role in plant disease assess-
ment.

VI. HYPERSPECTRAL IMAGING

A. Use of Hyperspectral Imaging
Of the three methods being considered in this review, hyper-

spectral imaging (HSI) is the most recent and least explored for
application in measurement of plant disease. HSI, also known
as imaging spectroscopy, is a technology that has received broad
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interest in agricultural research, particularly because of its po-
tential application, and the type of data it can generate (Camp-
bell, 2007). Over the past two decades, HSI has been investigated
at many different scales and for many applications in the agricul-
tural community. Applications have included monitoring fruit
quality, fecal detection on fruits and animal carcasses, creating
land use/land cover maps, detecting insect and weed infesta-
tions in crops, and disease detection and quantification in crops
(Hirano et al., 2003; Uno et al., 2005; Jensen, 2007; Okamoto
et al., 2007; Ye et al., 2007). This is illustrated by a search of
the literature that brings up over 200 publications in the past 10
years that deal with the use of hyperspectral imaging in agricul-
ture, although only relatively few of these have focused on plant
pathology (Bravo et al., 2003; Apan et al., 2005; Mishra et al.,
2007), and even fewer with disease severity assessment (Coops
et al., 2003; Huang et al., 2007; Larsolle and Muhammad, 2007;
Qin et al., 2008). Nonetheless, characteristics of HSI give it a
novel and useful application in plant pathology, as it generates
a lot of information on the spectral characteristics of the leaf
surface that can be used to detect and quantify symptoms.

B. History and Background to HSI
HSI has its roots in NASA’s Jet Propulsion Laboratory with

the development of the Airborne Imaging Spectrometer (AIS)
in the early 1980s (Campbell, 2007). There were earlier sys-
tems that produced similar data, but these systems were “non-
imaging,” such as the Geophysical Environmental Research
Spectroradiometer (GERS) (Kruse et al., 1999). HSI technology
combines the science of spectroscopy with imaging to acquire
both spectral and spatial information of an object or scene si-
multaneously. Briefly, spectroscopy is the study of how matter
interacts with electromagnetic radiation, and how the matter of
interest absorbs and reflects this energy (Green et al., 1998).
A radiometer measures the intensity of radiated, or thermal
energy from an object (Campbell, 2007), usually in just one
“band” of wavelengths with frequencies longer than 3 microns.
A photometer is similar in function, in that it measures energy
from a single wavelength source (which might be fairly broad,
such as 50 nm wide), but is typically measures in the shorter,
higher frequency portions of the spectrum. A spectrometer uses
a spectrograph and detector to measure a wide range of the
electromagnetic spectrum in discrete, contiguous “bands.” A
spectroradiometer is, therefore, a combination of a radiometer
and a spectrometer. It measures radiant energy over a large range
of the spectrum and separates the information into discrete, con-
tiguous bands, thus giving a spectral curve for the object in front
of the optics. This term has been used synonymously for instru-
ments that measure in the higher frequency wavelengths (such
as the visible and near infra-red, NIR), especially those used for
ground truthing airborne data (Campbell, 2007).

A hyperspectral image is created from many high spectral
resolution, contiguous spectral wave bands or sections of the
electromagnetic spectrum, but on an image scale. The hyper-

FIG. 15. Hyperspectral datacube (or “hypercube”) of a grapefruit leaf with
lesions of citrus canker. Notice the two spatial dimensions (X and Y ) and the
spectral dimension (Z).

spectral image is acquired using a spectrograph coupled with a
digital sensor (CCD, CMOS, InGAs, etc.) effectively enabling
each picture element (pixel) of the integrated circuit to become a
separate spectroradiometer. This produces a three-dimensional
image, sometimes called a data-cube or “hypercube,” with spa-
tial X and Y axes, and a spectral Z-axis (Figure 15). Typically,
hyperspectral images consist of hundreds of registered, contigu-
ous spectral bands such that for each pixel it is possible to derive
a complete reflectance spectrum.

An object within the spatial image can often be delineated
by its spectral “signature,” so the end result is as if each object
had been independently run through a standard spectrophotome-
ter. Once identified, objects can be classified, and differentiated
via their spectral signatures. The term “spectral signature,” also
called the “spectral response,” “spectral curve,” or even just
“spectra,” refers to the recorded spectral energy from the sample.
The term “spectral signature” is actually a misnomer because
the spectra aren’t as consistent as the term suggests. Biological
samples in particular tend to be heterogeneous, both within and
between samples, resulting in spectral variation of signatures.
In addition, there can be other constituents, sometimes called
spectral endmembers, in a given pixel that will influence the
spectral response. For example, if one was imaging a corn field
from above, the “signature” of that field would differ among im-
ages acquired when the seeds were planted, versus early growth,
versus harvest, due to the biological changes that are occurring
as the plant grows, as well as the amount of ground that is visible
between the plants (Campbell, 2007).

As with other remote sensing techniques, HSI has been ap-
plied to traditional applications, including geography, geology,
biomass and chlorophyll concentrations, and land cover clas-
sification (Jensen, 1996). Only relatively recently has it been
explored for use in plant disease detection and severity mea-
surement (Bravo et al., 2003, 2004; Apan et al., 2005; Huang
et al., 2007; Larsolle and Muhammad, 2007; Qin et al., 2008).
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TABLE 9
Different methods of producing a hypercube (after Fisher and Welch, 2006, with additions)

Staring Pure Wide Field Stop High
Snapshot 2-Dim Spectra FOV1 Required Throughput

Grating Yes No Yes Yes Yes Moderate
Computed Tomographic Imaging Spectrometer

(CTIS)
Yes Yes No No Yes Moderate

Spinning Prism No Yes No Yes No Yes
Linear Variable Filter (LVF) Yes No Yes Yes No No
Liquid Crystal Tunable Filter (LCTF) No Yes Yes Moderate No Moderate
Acousto-Optic Tunable Filter (AOTF) No Yes Yes Moderate No Moderate
Digital Array Scanned Interferometer (DASI) Yes No No Yes No Yes
Scanning Michaelson No Yes No No No Yes
Hadamard Transform No Yes Yes Yes Yes Yes
Prism-Grating-Prism (PGP) No No Yes Moderate No Yes

1 Field of View

Because hyperspectral imagery possesses high spectral resolu-
tion it can often detect spectral subtleties that allow a target to be
delineated from its background. However, due to its high spectral
resolution, the imagery that these sensors can generate is quite
large when compared to standard RGB digital images. There-
fore, more computing power is required to analyze the data. In
addition, large amounts of disk space are also required to store
the data. Obviously, file sizes have many variables (number of
pixels on the CCD, spectral resolution of the system, spatial
size of the image, etc.) but HSI image sizes in the hundreds of
megabytes (Mb) are not unusual.

C. Acquisition of the “Hypercube” Image
There are several ways in which the three dimensional hy-

percube can be acquired (Table 9) (Fisher and Welch, 2006).
Two of the more common techniques rely on taking two of the
dimensions of the hypercube at a time and then layering the
subsequent images together to form the third dimension (Kim,
et al., 2001). The first is to take multiple spatial images, each
with a different spectral input, and “stack” them together. This
technique has been referred to as “staring imaging” (Gowen,
et al., 2007). A staring image can be accomplished in several
ways, including (but not limited to) filter wheels, tunable filters,
and beam splitters (Figure 16). The second common technique
for creating a hypercube is by taking one line of spatial data, with
all its spectral information. This technique, called “pushbroom
scanning” is done by taking a two-dimensional X−Zimage, and
then changing the Y -axis (i.e., moving the camera or moving the
object) and then taking the next X−Z image. To do this, a spec-
tral dispersion element with a very fine slit (typically 7–80µm)
is placed behind the front lens, so that only this small section of
the focal plane continues on through to the CCD screen. The sin-
gle line of data is passed through a dispersion element, such as
a prism or grating, which separates out the spectral data before
it is projected onto a digital sensor. As the sensor and/or object

moves, the next spatial line of data is captured, processed, ap-
pended to the previous lines, and the 3-dimensional hypercube
is built. Using the “stack of cards” analogy from Figure 16, with
a “pushbroom” HSI system, as the cards are placed on the stack,
the spatial data (i.e., visible image) would be on the edge of a
card, while the spectral data would be along the face of the card.
Since there is relative motion between the sensor and the target,
this technique is useful for spaceborne and airborne sensors.
However, there have been other applications where pushbroom
systems have been used in laboratory environments, where mo-
tion is added either to the target (Qin, et al., 2008), or to the
sensor (Moshou et al. (2006) (Figure 17).

D. Wavelength Ranges
The wavelength range of an individual HSI system is depen-

dent upon several factors. Firstly, each digital sensor has a range

FIG. 16. Representation of how a Staring Image hypercube can be made.
Each “layer” is a picture of the same spatial image (in this case, a leaf with
lesions) taken with the filter shown to the right. The images are stacked together
like a deck of playing cards to form the hypercube. The X and Y axes are spatial,
while the Z axis is spectral.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
S
D
A
 
N
a
t
i
o
n
a
l
 
A
g
r
i
c
u
l
t
u
r
a
l
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
5
:
1
1
 
3
0
 
J
u
n
e
 
2
0
1
0



VISUALLY ESTIMATED PLANT DISEASE SEVERITY 95

FIG. 17. Graphical representation of how a “pushbroom” hyperspectral scan-
ner operates. As the object is in front of the lens, a small spatial line of data is
taken from the center of the image via the collimating slit. This data is diffracted,
and then projected on the CCD array. The object moves, and the next spatial
line is processed.

to which it is sensitive. For example, a common CCD is sen-
sitive in the visible and near-infrared portions of the spectrum
(specifically, 400–1000 nm), while InGaAs (Indium Gallium
Arsenide) and MCT (Mercury Cadmium Telluride) arrays are
better suited for the shortwave IR (or NIR) region (1000–2500
nm). Other sensors can operate at shorter or longer wavelengths
in the electromagnetic spectrum, ranging from the UV (200–400
nm) to thermal IR (up to 30,000 nm/12 µm), but these sensors
are usually airborne, or spaceborne systems and have not been
used to detect or measure plant disease. Within plant disease de-
tection and severity measurement a wide range of wavelengths
have been explored to study various pathosystems including
350–2500 nm (Apan et al., 2005; Delalieux et al., 2007; Liu
et al., 2007; Mishra et al., 2007; Yang et al., 2007), 400–850
nm (Huang et al., 2007), and 400–900 nm (Qin et al., 2008).

Another factor that will limit the spectral range of a system
is the spectral dispersion optics. Liquid Crystal Tunable Filters
(LCTFs) are usually limited in their spectral range (for example,
visible only (420–720 nm), or NIR (650–1050 nm). Another
popular tunable filter, the Acousto-Optic Tunable Filter (AOTF),
also has limited spectral ranges based on the crystal used, but
the AOTF has a much faster tuning speed than a LCTF. Prism-
Grating-Prisms (PGPs) and holographic grating systems can
record a larger wavelength range (400–1000 nm), again, based
on the prisms and grating elements used, but the time to take
the image is now dependant on how fast the sensor can scan the
image area.

E. Spatial Resolution
The spectral and spatial resolution can vary between differ-

ent systems, based on several factors. For spatial resolution, as
with any imaging system, three of these factors are the distance
from the object, the number of picture elements (pixels) on the
sensor, and the focal length. With commercial quality CCD sen-
sors now over 14-megapixels, and higher quantum efficiency
CCD cameras getting up to 4-megapixels, the spatial resolution
is getting much higher. For example, the images of the leaf used
in Figures 16 and 17 were taken with a laboratory based hyper-
spectral camera system consisting of a 1.3-megapixel camera,
at a height of 45 cm over the leaf, with a 17 mm lens. This pro-
duced a spatial size of about 89.1 x 89.8 µm/pixel in the X and Y

dimensions, or about 111 x 112 pixels/cm2. It should be pointed
out that this is for one camera set-up in a laboratory, and an air-
borne system typically would not record such high resolution.
However, an airborne system can image a much larger area per
image. For example, Huang et al. (2007) looked at yellow rust
infestation of wheat using an airborne sensor flown at 1000 m
and achieved a spatial resolution of 1 x 1 m. Lawrence and
Labus (2003) used a HSI system that was flown in a helicopter
at 500 m above a Douglas fir stand, and also achieved a 1 x 1 m
spatial resolution, with a swath of 500 m to cover an area of 650
x 418 m. Lass and Prather (2004) used a HSI system to detect
Brazilian pepper trees in the Florida everglades. By flying at an
altitude of 2500 m, they obtained a swath of 2.5 km, and a pixel
resolution of 5 x 5 m. On a smaller scale, Qin et al. (2008) used
a pushbroom type scanner to inspect individual grapefruits for
citrus canker. Although the authors did not publish their spatial
resolution, based on the reported spatial dimensions (280 x 658
pixels) and given an approximate size of a grapefruit of 10-15
cm, it can be estimated that their spatial resolution was high.
Moshou et al. (2006) used an HSI system to inspect wheat in
the field for yellow rust. Their system was suspended on a cart
approximately 1 m above the plants, and had a spatial resolu-
tion of 0.07 mm. There are advantages and disadvantages for all
systems and system setups – and as with visual assessment and
digital photography, care must be taken to get the best system
for the application or research to be done.

F. Image Processing Software and Algorithms for
Analyzing Hyperspectral Data

As HSI has become more and more popular in different re-
search environments, there are several vendors that have devel-
oped imaging processing software for hyperspectral data (Table
10). As mentioned earlier, HSI creates very large amounts of
data, of the order of hundreds of Mb per image, so analysis can
be difficult. Common image processing algorithms are often not
suited for analysis of the highly correlated data contained in a
hypercube. As such, several new routines for pre-processing and
analyzing these data have become available. Pre-processing typ-
ically involves such steps as atmospheric correction, calibration,
noise removal, and replacing any known bad data points. It may

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
S
D
A
 
N
a
t
i
o
n
a
l
 
A
g
r
i
c
u
l
t
u
r
a
l
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
5
:
1
1
 
3
0
 
J
u
n
e
 
2
0
1
0
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TABLE 10
Some commercially available hyperspectral image processing programs.

Hyperspectral imaging processing software Company Web Site

ER Mapper Earth Resources Mapping www.ermapper.com
EASI/PACE PCI Geomatics www.pci.on.ca
ENVI ITT-Visual Information Systems www.ittvis.com/envi
ERDAS Imagine Leica Geosystems Geospatial Imaging, LLC www.erdas.com
GRASS GIS Center for Applied Geographic and Spatial

Research
http://grass.osgeo.org

IDRISI Clarke Labs www.clarklabs.org
PG Steamer Pixoneer Geomatics www.pixoneer.com
TNT Mips MicroImages www.microimages.com
Image IntelligenceTM Suite Definiens www.definiens.com
RemoteView Overwatch Geospatial www.geospatial.overwatch.com/#

also involve spatial and/or spectral subsetting. Once these steps
are complete, analysis of the data can proceed. Although analy-
sis of the data may take many forms, one of the more common
techniques is to classify the image pixels based on their statis-
tical similarity to a known spectral “endmember” of interest to
the analyst. This is referred to as supervised classification.

1. File Reduction and Subsetting
Due to the large file sizes and highly correlated data contained

in hyperspectral imagery, often one of the first steps in analyzing
the data is to reduce the data dimensionality. Noise removal and
image size reduction can be accomplished in many ways, but
two popular methods are principle components analysis (PCA)
and the minimum noise fraction (MNF, or Rotation) transforma-
tion routines. PCA is a common statistical multivariate analysis
that compresses the data by drawing out maximum covariance
and removes correlated elements, leaving only uncorrelated out-
put bands. It enables the identification of combinations of the
original data wavelength bands that have the most impact on
the variation in pixel values within the image (Campbell, 2007).
When a PCA is run on an image, the first PC accounts for the
most variation, and each subsequent PC accounts for less vari-
ation. The MNF is a linear transformation consisting of two
sequential PCA rotations. The first decorrelates and rescales the
noise in the data (also called “noise whitening”), and the sec-
ond PCA rotation is applied to the noise-whitened data (Anon.,
2006). This process maximizes the signal-to-noise ratio of each
PC, so that the noise can be effectively removed from the dataset.
Following the MNF transformation, a reverse-MNF returns the
data to its original data space. The reverse MNF incorporates
only those bands containing coherent images, determined by
examining the images and their associated eigenvalues.

2. Spectral Library Definition
After the data reduction, the final step before supervised clas-

sification is the definition of the spectral library. The spectral
library is a database composed of the “known” spectra of in-

terest that need to be identified in the HSI process. This can
be accomplished in a variety of ways. The simplest approach
is to select a portion of the image from “known” test data, and
average the pixels together. This works well if you have a fairly
homogenous sample, but for more heterogeneous samples, or
samples with mixed pixels, it is not as effective. One method of
finding the most spectrally pure pixels within an image is called
the pixel purity index (PPI). The PPI is a technique where ran-
dom vectors are drawn through the data cloud, and the extreme
pixels are identified (Boardman et al., 1995). This process is
repeated through thousands of iterations, and the purity of the
pixel is expressed as how many times that pixel was classified
as “extreme” from the vectors. These extreme pixels are called
“endmembers,” and are considered to be the most spectrally
“pure” pixels in the image. If one of these endmembers in the
training data is part of the object that is of interest (such as the
disease symptom on the plant), this endmember spectra could
be used in the spectral library. The library can include as few
as one spectra, or an unlimited number from which an analyst
can chose to apply to the test data. For example, if looking to
differentiate between two diseases and two other biostressors,
as well as the ground, there could be five spectra in the library.
Another alternative is to create a system that only looks for the
objects that are made up of that one spectrum of interest, i.e.,
a particular disease symptom, while ignoring everything else in
the image.

3. Classifiers
Image classifiers are algorithms or techniques that separate

the pixels of a digital image into different groups, or “classes”
(Campbell, 2007). There are many different classification rou-
tines available in the software listed in Table 10, and there is
also the option of creating user-defined algorithms that may
incorporate various classifiers, statistical routines, etc. Some al-
gorithms are very simple “band math” type of functions, such
as the Normalized Difference Vegetation Index (NDVI), which
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is used to discriminate healthy biomass from soil. More detailed
information on many of these vegetative indices (VI), and com-
parisons under different circumstances can be found elsewhere
(Elvidge and Chen 1995; Haboudane et al., 2004; Payero et al.,
2004; Tilling et al., 2006). Although these VIs are important
to the analysis of biomass and leaf area, they are not hyper-
spectral, but multispectral applications, and therefore will not
be addressed in this review. They do represent a whole class of
“simple” algorithms that can be done with small sub-sets of HS
data. Since there can be hundreds of bands within a hyperspec-
tral image, there are many “band math” style algorithms that
can be applied to parts of the data set, using simple arithmetic
functions.

Classifiers can be loosely grouped into two types: “super-
vised” and “unsupervised.” Unsupervised classifiers separate
an image based on the statistical similarity of the pixels within
an image. These classifiers assume no a priori knowledge of the
scene’s endmembers. Thus, the analyst need only enter a few
general parameters, such as the number of spectral classes de-
sired. Supervised classifiers require more input from the analyst,
as the person analyzing the image must inform the software what
to look for. Supervised classification uses either pre-defined
spectral libraries (already discussed above) or areas within the
image that are “known” to the user to classify the “unknown”
pixels within an image (Campbell, 2007). Another way of think-
ing about a supervised classifier is as an analysis of the image
using a training set, which in this case could be a known area
of the image, or from another image, in the case of a spectral
library. To differentiate a “supervised” from an “unsupervised”
classifier, imagine an overhead hyperspectral image of a forest.
With an unsupervised classifier, the analyst might tell the com-
puter to break the image into four categories, thinking that the
image would have trees, bare ground (earth), water, and rock.
Each pixel is then assigned to one of the four classes based on
the spectra of that pixel. The grouping of the pixels does not nec-
essarily need to relate to any information that the analyst has; for
example, the image might not have any water in it, but the pixels
would still be grouped into 4 classes. So, the classification may
not give the analyst the information they are looking for.

With a supervised classifier the analyst is able to tell the
program to look for a specific spectrum within an image (in
the above example, look for water), given that the spectra is
already defined, either through a spectral library, or by choosing
several pixels within the image to define the spectra to look for.
This can be done for as many spectra as desired, so you can
search an image for trees, ground, water and rock, assuming
the spectra have been defined for those four components. Once
the supervised classifier is launched, it will segment the image
into either “n” or “n+1” classes, where “n” is the number of
spectra defined by the analyst. Some classifiers will also have
an unclassified class, for those pixels that don’t fit into any of
the defined classes.

Some common supervised classifiers that have been used in
the processing of hyperspectral data are described in the follow-

ing subsection. However this list is not meant to be exhaustive.
An excellent source of more information and a detailed descrip-
tion of many of these, as well as the methods of calculation
is Richards and Jia (2006). Once identified, test images can be
classified using these different algorithms, and/or combinations
of algorithms.

a. Parallelepiped classifier. One of the simplest classi-
fiers is the parallelepiped classifier. Using the means from each
class in the training data as well as their upper and lower lim-
its, boundaries are drawn in the data set that segments the test
data into the different classes (Richards and Jia, 2006). For a
pixel to be classified into any specific class, it must fit within
the boundaries in all the bands within the image. This method
does leave open areas where data points (pixels) cannot be clas-
sified into any of the defined classes and therefore assigned to
an “unclassified” class. Although this method can be used on
hyperspectral data, it is better suited for multispectral data.

b. Maximum likelihood classifier. Maximum likelihood
(ML) is a classifier which uses the means and variances esti-
mated from the training data to determine the probability that
any particular pixel within an image belongs to a particular class
(Campbell, 2007). It is considered one of the most commonly
used classifiers in image analysis (Richards and Jia, 2006). In
this classifier, all pixels are assigned to a class, with no “un-
classified” data. One assumption made by this classifier is that
the vector pixel is normally distributed with both the mean and
variance, where both of these are unknown (Lugo-Beauchamp,
et al., 2004).

c. Mahalanobis distance classifier. A derivative of the
ML classifier is the Mahalanobis distance classifier. This al-
gorithm works in a similar fashion to the ML, but its main
assumption is that the covariance matrix of the classes is equiv-
alent. Because of this assumption, the Mahalanobis distance
classifier is much faster than the ML (Anon., 2006).

d. Linear spectral unmixing classifier. Linear spectral un-
mixing (LSU) is an analysis based on the linear spectral mixing
model, which holds that any individual pixel is made up of
composite spectra, not pure spectra. This is due to the fact that
sensor resolution is not fine enough to allow for only one object
in a pixel (Campbell, 2007). If the dispersal of objects within the
pixels field of view is high, the composite is said to be nonlinear.
LSU assumes that it is possible to identify the components and
their quantities of any mixed pixel, if you know the pure spectra
of the components, such as from laboratory work.

e. Minimum distance classifier. The minimum distance
classifier, also referred to as the Euclidean distance classifier,
calculate the distance of each vector pixel to the mean vector of
each class, using Euclidean metrics. Each vector pixel is then
assigned to the closest class, and as with the ML classifier, there
is no unclassified data (Lugo-Beauchamp, et al., 2004).

f. Matched filter classifier. The matched filter classifier
is a statistical algorithm that allows for the ability to identify
a single, known class without the influence, or even knowing,
any other endmember signatures (Boardman, 1998). Boardman
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(1998) combined this classifier with the linear spectral mix-
ing model, creating the mixture tuned matched filter classifier
(MTMF), which “combines the best parts of the LSM model and
the statistical MF model while avoiding the drawbacks of each
parent method.” The MTMF has the ability to classify a sin-
gle known target vector pixel without knowing the background
endmember signatures, without being constrained to using just
pure pixels.

g. Spectral angle mapper classifier. The spectral angle
mapper classifier maps the pixel vectors to a known vector from
a spectral library, by converting the image to an n-dimensional
data space, where n is the number of bands in the image (Kruse
et al., 1993). Once the data is in this n-D space, the pixel vectors
are compared to the known vectors, and if the pixel vector
is within a certain angle of the known, it is classified as that
substance. If the pixel vector is not near enough to any of the
known vectors, it is unclassified. This method is not confused by
illumination differences, as the brightness of the pixel will only
affect the length of the pixel vector when that data is converted
in to n-D space, and the angle between the vectors will remain
constant.

h. Neural net classifier. The neural net (NN) classifier is
a layered feed-forward network classification that incorporates
supervised learning (Richards and Jia, 2006). NN’s can be seen
as a more attractive system for classifying images based on
their spectra when compared to the previously mentioned su-
pervised classifiers, based on the learning ability of the system
(Egmont-Petersen et al., 2002). One major difference between
an image processing NN and a standard NN is that the thresh-
old logic units (TLU) customarily seen are actually processing
elements, which are similar but do not apply a thresholding
operation. Rather, they use a mathematically differentiable op-
eration instead (Richards and Jia, 2006). The network learns by
minimizing the difference between the output node activation
and the output (Anon., 2006).

i. Binary encoding classification. Binary encoding is an
algorithm that converts the spectra in the library into 0’s and 1’s
by comparing each point along the spectral curve to the spectral
mean. If the point falls below the mean, it is assigned a value
of “0”, and if above the mean, a “1”. Then, after all the data is
encoded in this method, test spectra are compared to the library
spectra based on how many bands (points) match the library
spectra (Anon., 2006).

G. Application in Plant Pathology
HSI is a relatively young science, and its application in plant

pathology is particularly recent, even more so in plant disease
severity assessment. Several of the studies that have been done
have been concerned more with disease detection, rather than
quantification and these are considered in this review as they
demonstrate the current state of this science as it is applied and
is developing. The use of HSI for quantifying disease has yet to
be fully explored, or reach its full potential, but the relatively

few occasions where it has been used suggest that it can be a
powerful disease assessment tool.

1. Detection of Disease
Using HSI to detect diseases in plants has now been tested on

several plant species and HSI has shown a convincing ability to
detect disease in infected crops. This work has been done mostly
over the past ten years. In one of the earliest studies, HSI was
used to detect yellow rust in wheat fields (Bravo, et al., 2003), us-
ing a hand pushed rolling cart that held the spectrometer (a PGP
system) approximately 1 m above the ground, with a detection
success rate of 96%. Bravo et al., (2004) developed their detec-
tion system further, by adding multispectral fluorescence imag-
ing (MSFI) capability to the HSI system previously used. This
was accomplished by having a 4-band multispectral camera, a
Xenon arc lamp with a low pass filter, and a shade, to minimize
the effects of ambient light. The ability of each system to detect
disease within a plot was tested independently, using quadratic
discriminant analysis, which is based on the Mahalanobis dis-
tance between a single observation and the class (healthy or
diseased) mean. Finally, they combined the best wavelengths
from each system, analyzed that data with the quadratic dis-
criminant analysis, and differentiated healthy plants 98% of
the time and diseased plants 91% of the time, demonstrating a
promising ability to detect disease. In another study, Apan et al.
(2005) used a spectrophotometer (350-2500 nm) to detect early
blight in tomatoes. After removing the noise in the spectra, they
analyzed the data using a Partial Least Squares regression and
demonstrated good spectral separability between infected and
healthy tissue, based on the “red-edge” and green regions of
the visible spectrum. The red edge is a spectral phenomenon
for plants that produce chlorophyll, and is defined by a massive
increase in reflectance at approximately 700 nm, or just on the
border of red and infrared in the electromagnetic spectrum (Sea-
ger et al., 2005). As a leaf is stressed, this rapid uprise in the
reflectance shifts downward, towards the red region of the spec-
trum. This is called the “blue shift” of the red edge (Rock, et al.,
1988). Apan et al. (2005) also suggested that parts of the NIR re-
gion would also be useful in differentiating diseased plants from
healthy plants. Further work, using a first derivative showed rea-
sonable prediction ability (∼80%). Similar results were found
for ladybird infestation in eggplant, in the same experiment.
In other studies, HSI has been applied to detect and quantify
systemic diseases in the field, which is an incidence measure
rather than a severity measure but still quantifies disease in the
case of systemic pathogens. For example, Mishra et al. (2007)
used a spectroradiometer to look at the spectral characteristics
of a Huanglongbing (HLB) infection in a citrus field. Using in-
formation from the 350–2500 nm range of the electromagnetic
spectrum, they identified the most important wavelengths and
used two different analyses (a spectral derivative analysis, and
a spectral ratio analysis) to find the wavelengths that provided
the most discriminability between healthy citrus and HLB in-
fected plants. Two ratios were sensitive to differences between
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HLB positive and negative trees, with an ability to discriminate
HLB positive from negative trees using wavelengths between
585–705 nm. Qin et al. (2008) developed a custom HSI system
based on PGP technology, which gave them a usable spectral
range of 400–900 nm. They used it to find and differentiate citrus
canker on grapefruit, emulating a processing line set-up, using a
simple PCA and threshold for the classification. Cankered fruit
were differentiated from healthy fruit and other diseases 93%
of the time, even after treatments of chlorine, soap washes, and
a wax coating. For a new technique, HSI has thus shown an
encouraging capability to detect diseases in the field, and on
individual plants. Only recently has this discerning ability to
detect disease been harnessed for disease quantification as well.

2. Using HSI to Assess Disease Severity
The earliest attempts to use HSI for measuring disease sever-

ity were performed on a plantation scale. Coops et al. (2003)
used the CASI-2, airborne based HSI system to assess sever-
ity of needle blight in Australian Pine, and applied a six-point
category scale (1 = no visible signs of infection, to 6 = severe
defoliation with 80-100% of the whorls showing evidence of
blight) for severity based on visual assessment from the ground.
Comparing the visual data to data obtained from the CASI-2,
they tracked the blight score versus three indices, upper and
lower slope red edge indices, and a red edge vegetation stress
index (RVSI). Since the spatial resolution of the CASI-2 is not
at a leaf level (they reported it to be 0.8 m), they looked at 2
sections of the canopy – a halo which was the pixels around the
center of the tree (essentially eliminating the trunk region), and
the mean for pixels that covered the canopy. The halo measure-
ment seemed to have a higher correlation with the higher blight
scores (higher infection), whereas the mean measurement were
better correlated to the lower scores, although not as significant.
Of the three indices, the RVSI had the most significant corre-
lation. They operationally defined accuracy as the proportion
of omission and commission errors in the different classes, and
found that accuracy of the HSI system was dependent on the
disease class, with the greatest accuracy (40%) in class 4. When
they combined the data into three categories (low, medium and
high infection) instead of six, the accuracy of classification in-
creased to > 70% in all classes. At a smaller scale, Muhammed
and Larsolle (2003) did a detailed examination at the effect of
fungal growth on the spectral signature of wheat plants, using
four different severity levels on a visual scale. Firstly, they re-
duced the dimensionality of the data by running either a PCA or
an independent component analysis (ICA), a different multivari-
ate linear transformation on the training datasets. They then ran
these transformations through a multivariate analysis method -
feature vector based analysis (FVBA) - which produced one-
dimensional vectors, which could then be compared against
unknown datasets (images). They found that the coefficient of
determination for the relative disease intensity was 95.7% for a
second order polynomial, on either a PCA or the ICA, followed
by the FVBA when comparing the spectral classification to vi-

sual assessment. As the severity of disease increased, there was
a flattening of the spectra at the green peak, and a decrease in
the shoulder of the plateau of the NIR region. In a later article,
Larsolle and Muhammed (2007) did a similar study on wheat
and barley, but simplified their analyses by removing the PCA
and FVBA, and classifying the images using a nearest neighbor
classifier. This classifier compared the known data vectors to
the unknowns, and looked for the highest correlation coefficient
with the lowest sum of squares between the two vectors. Allow-
ing a 10% error in the results, the ability to correctly classify the
measured disease severity compared to the visual assessments
was 86.5%. Investigating yellow rust disease in wheat, Huang,
et al. (2007) used an airborne system that acquired VIS-NIR
data (400–850 nm) and compared the resulting photochemical
reflectance index (PRI) (a type of VI) against a visual nine-
point classification system, based on percentage of the plant
covered in rust. With regression analysis they were able to show
that PRI was fairly reliable compared to visual assessments for
determining severity (coefficient of determination, r2 = 0.91).
Using the HSI system at the scale of individual leaves, Delalieux
et al. (2007) measured foliar symptoms of apple scab using a
spectroradiometer (350–2500 nm) and a 100 W halogen lamp
on individual apple leaves. The results were compared against
a previously developed 6-level visible scale (Chevalier et al.,
1991). Using various statistical analyses, and multiple wave-
length ranges, they were able to show that “early detection of
biotic plant stress using hyperspectral remote sensing has po-
tential,” with ability to correctly classify ranging from 80 to
90%. Liu et al. (2007) used a spectroradiometer to determine
brown spot disease severity in rice at 350–2500 nm. After re-
ducing the data to just 3 wavelengths using multiple stepwise
linear regressions, they were able to get coefficients of deter-
mination between observed and predicted disease severity of
0.94, with a root mean square error (RMSE) of 5.8%. Although
not directly comparable, as these data were not compared to
actual values, this regression suggests similarity to reports by
Nutter et al. (1993) using a radiometric method to measure dis-
ease severity in plots of bent grass infected with dollar spot.
Liu et al. (2007) also examined the data using PCA, and found
that when using just the first two PCs, the coefficient of de-
termination was 0.63 between observed and predicted disease
severity. However, a PLS analysis of the data gave the best re-
sults (r2 = 0.97, RMSE of 2%). It is worth mentioning that
spectroradiometers have also been used to measure the intensity
of infestation with insect pests, which requires the similar needs
of relative quantification of particular spectra to estimate disease
severity (Yang et al., 2007). Although not a phytopathological
example, a spectroradiometer was used to examine leaf-folder
infestations in rice plants, and compared the spectral responses
against a 9 point percent scale. After recording the data between
350–2500 nm, the information was analyzed using a multi-
ple linear regression, and various VI’s. Their results indicated
that the best linear regression for plants in the active tiller-
ing stage included six different wavelengths between 757 and
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1963 nm, and produced a coefficient of determination of 0.86.
When examining the plants during the heading stage of devel-
opment, the linear regression to correctly score the infestation
intensity used only four wavelengths between 517–974 nm, and
showed good precision in relation to the 9 point percent scale
(r2 = 0.96).

3. Ability to Discern Multiple Disease Symptoms
Most of the research on the ability of HSI to detect biotic

stress in plants only dealt with a single, specific biotic stres-
sor, either a single disease or a single nutrient deficiency, when
compared to healthy plant tissue. One exception is the study by
Moshou et al., (2006). They were able to distinguish between a
yellow rust infection and a nitrogen deficiency in wheat using up
to five different wavelengths in the visible and NIR sections of
the electromagnetic spectrum, using a neural net classifier. Dis-
ease was measured approximately 1 m above the plants while
on a rolling cart, and the data analyzed with a standard multi-
spectral algorithm (NDVI) to separate leaf material from the rest
of the canopy, followed by an image normalization calculation
to normalize the light intensity at each leaf, and the data com-
pressed by determining the important bands via ANOVA. From
these wavelengths, the three different criteria (healthy, diseased,
and nitrogen deficient) were separated with two different classi-
fication techniques. First, they applied a quadratic discriminant
analysis (QDA), and then used a second classification technique,
a self-organizing map neural net. The best results were obtained
using five wavelengths, which led to agreement of 95–100%, al-
though they mention that “diseased canopies show high spectral
variations, causing the necessity of spatial averaging” (Moshou
et al., 2003). Multiple diseases have also been detected on citrus
with HSI. Qin et al. (2008) were not only able to differentiate
citrus canker on grapefruit from healthy fruit 93% of the time,
they also were able to differentiate healthy from unmarketable
conditions such as copper burn, and various diseases including
greasy spot and melanose 92% of the time. This demonstrates
the potentially very useful ability of HSI to differentiate at least
some disease stresses based on spectral reflectance. Qin et al.
(2009) improved their ability to differentiate canker infected
grapefruit from several other types of disease symptoms by us-
ing an image classification technique called spectral information
divergence (SID). SID uses the spectra vector like the SAM, but
in the SID, the vector is modeled as a probability distribution.
With this technique, Qin et al. (2009) were able to correctly
separate the canker infected fruit 96% of the time. This research
shows that there is potential in certain areas of plant disease
detection to use HSI to identify one disease from another.

Thus although HSI has been investigated as a research tool
in the discrimination and detection of plant diseases, and has the
potential to be an important tool for the assessment of disease
severity, it is yet to be applied as a research tool or used in a
commercial application for plant disease detection or quantifi-
cation. This could be due in part to the fact that when a plant
is stressed, either by an infection or by other biostressors such

as a nutrient deficiency, insect invasion, and physical damage,
the spectral response can be similar. Therefore, it remains chal-
lenging to differentiate the cause of the stress to the plant, based
solely on the spectral response.

H. The Future of HSI for Disease Severity Measurement
The case for hyperspectral imaging for measuring disease

severity is not yet proven, although this technology has poten-
tial that has yet to be fully explored. For example, the neural
net algorithms have shown some promise in discrimination.
Other algorithms can also be developed that are more special-
ized for the detection of plant diseases. It has been shown to
have the capacity to differentiate some diseases. Furthermore,
there are also many other areas of the electromagnetic spec-
trum, including UV, mid- and far-IR, and even up in the thermal
bands, that have not been tested, and which could turn out to
be more discriminating in the differentiation and assessment of
plant diseases using HSI.

VII. ADVANTAGES AND DISADVANTAGES OF VISUAL
RATING, IMAGE ANALYSIS, AND
HYPERSPECTRAL IMAGING

Advantages of visually assessed disease

a) The process can be quick.
b) With some training it is relatively easy to recognize and

differentiate multiple diseases.
c) The use of assessment aids and training markedly improves

results.
d) There are several techniques that can be used to suit a partic-

ular need (ordinal scales, interval scales, category scales and
ratio scales).

e) No equipment required.

Disadvantages of visually assessed disease

a) Raters may tire and lose concentration, thus decreasing their
accuracy.

b) There can be substantial inter- and intrarater variability (sub-
jectivity).

c) There is a need to develop standard area diagrams to aide
assessment.

d) Training may need to be repeated to maintain quality. Raters
are expensive.

e) Visual rating can be destructive if samples are collected in
the field for assessment later in the laboratory.

f) Raters are prone to various illusions (for example, lesion
number/size and area infected).

Advantages of digital photography and image analysis in the
visible spectrum

a) Image analysis can be quick, accurate and reliable when
automated.
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b) If a good automated system can be developed (there are a
few reported instances of agreement verification) then it can
be extremely powerful.

c) Technology exists to make the assessment both reliable and
accurate.

d) Image analysis equipment is relatively inexpensive.
e) There is specific software adapted for the applications and

specific needs and issues in plant disease measurement.

Disadvantages of digital photography and image analysis in
the visible spectrum

a) Coping with plant-to-plant variation in color and various
image artifacts or flaws is not straightforward.

b) Not established how to deal with multiple diseases, damage
or physiologic conditions on sample leaves.

c) It requires some training in the program to become proficient.
d) Truthing is often required to ensure the quality of the mea-

surement.

Advantages of hyperspectral imagery

a) Massive amounts of data and information about the target is
acquired at one time.

b) If a good automated system can be developed (very few
reported) then it can be particularly discerning.

Disadvantages of hyperspectral imagery

a) Enormous file size, which can be slow to capture and process,
b) Still a new technology, not fully tested or adapted to the

needs of plant disease severity assessment.
c) Not established how to deal with multiple diseases but offer

more possibilities.
d) It is expensive.
e) Substantial training and expertise is required to use it to its

full potential.

VIII. SOME FUTURE RESEARCH PRIORITIES IN VISUAL
ASSESSMENT, THE APPLICATION OF
HYPERSPECTRAL IMAGING AND IMAGE
ANALYSIS FOR MEASURING DISEASE SEVERITY

1. A comparison or different interval and ratio scales, to com-
pare reliability, agreement and the time taken to assess dis-
ease so as to provide a more objective framework for choos-
ing scales for specific purposes, and to confirm advantages
and disadvantages of these systems.

2. What is an optimum scale? Can simulation modeling ap-
proaches be used to help investigate the effects of scale and
rater ability on the mean and standard deviation of the es-
timates to investigate and develop ideal scales for different
purposes?

3. How long do the benefits of a computer training session last?
Is this individual dependent? Are there ways to make this
more effective and permanent?

4. SADs are often logarithmically based. The ability to compare
different approaches to choosing SAD severities exists. Is
there any difference in the quality of the estimate if they
are linear compared to logarithmic, and is there any merit to
having a lower disease severity more highly represented?

5. Do visual raters show a constant estimation error with actual
disease? Raters clearly vary tremendously in ability for sev-
eral reasons, but to understand what underlying propensities
exist will require a comprehensive approach involving multi-
ple raters and using standard psychophysical methods across
the full spectrum of disease severity. It remains unconfirmed
which disease severities are less well estimated.

6. Is there any difference in error when estimating disease sever-
ity based on taking digital images or visual assessment at dif-
ferent scales? Are leaves, plants or quadrats the best units?
How does the mean severity, and error in the severity estimate
compare?

7. Compare different methods of automating disease assess-
ment (direct thresholding/using algorithms to recalibrate
thresholds for each image) to gain an insight into the best
ways to measure disease, and the benefits accrued by incor-
porating any new techniques.

8. Can ways be developed that will allow image analysis to
differentiate diseases on the same leaf or within the same
canopy using the RGB model?

9. How many samples are required to gain a realistic estimate
of the mean using different methods? Assuming an adequate
sampling strategy, the more accurate and precise a technique,
presumably the smaller the samples needed to provide an
accurate estimate of the mean disease, while reflecting the
actual variability of the population.

10. Can hyperspectral imaging, either in its current form factor
or in other systems, provide a platform by which several
diseases can be differentiated simultaneously, with no inter-
ference from other biostressors?

11. Can multispectral systems (3–20 bands) that can differentiate
disease be developed? These systems might be significantly
cheaper than current hyperspectral systems.

IX. CONCLUSIONS
Over the last thirty years there have been huge advances

in understanding plant disease assessment and applying new
technologies, particularly image analysis, and more recently
hyperspectral imagery. Both of these are likely to play an in-
creasing role in the assessment of disease severity. The science
is becoming defined and the concepts of disease measurement
are being explored, and many of the common sources of er-
ror in visual rating have been identified. Inter- and intrarater
variability exists, and the advantages and disadvantages of vi-
sual disease assessment methods have begun to make them-
selves understood on an empirical basis. The value of train-
ing and SADs has been demonstrated to improve the quality
and consistency of visual rating. Objective, newer methods of
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measuring severity of disease are now more commonplace and
being explored and include image analysis and hyperspectral
imagery. Image analysis can deliver results with high agreement
to actual values, even when automated. Its objectivity and abil-
ity to deliver high throughput is advantageous. Both are useful
additions and have applications for the measurement of disease
severity at several different scales from individual leaves and
other organs to remote aerial and satellite images.
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à G. Viennot-Bourgin, 169–173.
Kranz, J. 1988. Measuring plant disease. Pages 35–50 In: Experimental Tech-

niques in Plant Disease Epidemiology (J. Kranz and J. Rotem, eds.), Springer-
Verlag, New York.

Krueger, L. E. 1989. Reconciling Fechner and Stevens: Toward a unified psy-
chophysical law. Behav. Brain Sci. 12: 251–320.

Kruse, F. A., Boardman, J. W., and Huntington, J. F. 1999. Fifteen Years of
Hyperspectral Data: northern Grapevine Mountains, Nevada. In: Proceedings
of the 8th JPL Airborne Earth Science Workshop: Jet Propulsion Laboratory.
JPL Publication 99-17, p. 247–258.

Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T.,
Barloon, P. J., and Goetz, A. F. H. 1993. The spectral image processing system
(SIPS) – interactive visualization and analysis of imaging spectrometer data.
Remote Sens. Env.44: 145–163.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
S
D
A
 
N
a
t
i
o
n
a
l
 
A
g
r
i
c
u
l
t
u
r
a
l
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
5
:
1
1
 
3
0
 
J
u
n
e
 
2
0
1
0



VISUALLY ESTIMATED PLANT DISEASE SEVERITY 105

Lamari, L. 2002. ASSESS: Image Analysis Software for Plant Disease Quantifi-
cation. APS Press, St. Paul, MN.

Large, E. C. 1953. Some recent developments in fungus disease survey work in
England and Wales. Ann. App. Biol. 40: 594–599.

Large, E. C. 1955. Methods of plant disease measurement and forecasting in
Great Britain. Ann. App. Biol. 42: 344–354.

Large, E. C. 1966. Measuring plant disease. Ann. Rev. Phytopath. 4: 9–26.
Large, E. C. and Honey, J. K. 1955. Survey of common scab of potatoes in Great

Britain, 1952 and 1953. Plant Path. 4: 1–8.
Larrsolle, A. and Muhammed, H. H. 2007. Measuring crop status using multi-

variate analysis of hyperspectral field reflectance with application to disease
severity and plant density. Precision Agric. 8: 37–47.

Lass, L. W. and Prather, T. S. 2004. Detecting the locations of Brazilian pepper
trees in the everglades with a hyperspectral sensor. Weed Tech.18: 437–442.

Lawrence, R. and Labus, M. 2003. Early detection of douglas-fir beetle infesta-
tion with subcanopy resolution hyperspectral imagery. West. J. App. For. 18:
202–206.

Lee, Y. J. 1989. Aerial photography for the detection of soil-borne disease. Can.
J. Plant Path., 11: 173–176.

Leite, R.M.V.B.C. and Amorin, L. 2002. Development and validation of a
diagrammatic scale for Alternaria leaf spot of sunflower. Summa Phytopath.
28: 14–19.

Lillesand, T. M., Meisner, D. M., French, D. W., and Johnsson, J. L. 1981. Eval-
uation of digital photographic enhancement for dutch elm disease detection.
Photogramm. Eng. Remote Sens. 48:1581–1592.

Lin, L. I. 1989. A concordance correlation coefficient to evaluate reproducibility.
Biometrics 45: 255–268.

Lin, S. J., Brown, P. A., Watkins, M. P., Williams, T. A., Lehr, K. A., Liu, W.,
Lanza, G. M., Wickline, S. A., and Caruthers, S. D. 2004. Quantification of
stenotic mitral valve area with magnetic resonance imaging and comparison
with Doppler ultrasound. J. Am. Coll. Cardiol. 44: 133–137.

Lindow, S. E. 1983. Estimating disease severity of single plants. Phytopathology
73: 1576–1581.

Lindow, S. E. and Webb, R. R. 1983. Quantification of foliar plant disease
symptoms by microcomputer-digitized video image analysis. Phytopath. 73:
520–524.

Lipps, P. E. and Madden, L. V. 1989. Assessment of methods of determining
powdery mildew severity in relation to grain yield on winter wheat cultivars
in Ohio. Phytopathology 79: 462–470.

Liu, Z., Huang, J., Shi, J., Tao, R. Zhao, W., and Zhang, L. 2007. Characterizing
and estimating rice brown spot disease severity using stepwise regression,
principle component regression, and partial least-squares regression. J. Zhe-
jiang Univ. Sci. B. 8: 738–744.

Lovell, D. J., Parker, S. R., Hunter, T., Royle, D. J., and Coker, R. R. 1997. Influ-
ence of crop growth and structure on the risk of epidemics by Mycosphaerella
graminicola (Septoria tritici) in winter wheat. Plant Path. 46: 126–138.

Lugo-Beauchamp, W., Cruz, K., Carvajal-Jiménez, C. L., and Rivera, W. 2004.
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